scholarly journals The Calculation of Corrective Coefficient for Grounding Electrode Resistance according to Variation of Soil Resistivity by Field Measurement

2017 ◽  
Vol 10 (2) ◽  
pp. 213-218
Author(s):  
Young-Chul Cho ◽  
park jung min ◽  
Kyoung-Seok Yoon
2020 ◽  
Vol 10 (22) ◽  
pp. 8151
Author(s):  
Li Zhu ◽  
Hui Jiang ◽  
Fan Yang ◽  
Hanwu Luo ◽  
Wenzhen Li ◽  
...  

The current distribution of the grounding electrode in a high-voltage direct current (HVDC) transmission system affects the state of power equipment in its vicinity, which depends on the soil resistivity and shape of the grounding electrode. In this paper, current distribution in the vicinity of an ±800 kV grounding electrode is investigated by simulation and experiments. Firstly, the model to calculate the current distribution with two typical frozen soils is set up, and simulation models and experimental platforms are established; meanwhile, the finite element method (FEM) is used to calculate the current and potential dispersion of linear, cross-shaped, and ring-shaped grounding electrodes in the simulation models. After obtaining the lab current data from the simulation, an innovative method based on a “drainage wire” with a Hall sensor is proposed to measure the current in an experimental setup. The results show that current and potential distribution characteristics are related to the shape of the grounding electrode and soil resistivity. Meanwhile, the current measurement scheme can measure the current in soil with a lower error. This article concludes that these two typical models can reduce the complexity of frozen soil analysis, and the measurement scheme can accurately monitor the current to reduce the damage to the surrounding power equipment.


2016 ◽  
Vol 65 (3) ◽  
pp. 449-461 ◽  
Author(s):  
Mehrdad Mokhtari ◽  
Zulkurnain Abdul-Malek ◽  
Gevork B. Gharehpetian

Abstract Grounding electrode resistance non-linearly changes under impulse conditions due to soil ionisation phenomenon. Several models have been proposed to model soil ionisation for grounding electrodes applications. However, to date, there is yet an attempt made to compile all these works into a comprehensive review article. Therefore, this paper is written with the objective of summarizing all related works in this field as a one- stop reference. With reference to the literature, this paper is written to summarize the working principles of the soil ionisation models as well as the accuracy and performance analysis of the models. This paper, particularly highlights the deficiencies of the available models in terms of accuracy and performance. This knowledge will contribute to the development of a new accurate and efficient soil ionisation model.


Author(s):  
N. H. Hashim ◽  
S. N. M. Arshad ◽  
N. H. Halim ◽  
C. L. Wooi ◽  
AM Ariffen ◽  
...  

2014 ◽  
Vol 554 ◽  
pp. 628-632 ◽  
Author(s):  
Mehrdad Mokhatri ◽  
Zulkurnain Abdul-Malek

The soil ionization phenomenon occurs during the dispersion of lightning current into the earth. This phenomenon causes the grounding electrode resistance to be effectively reduced. The extension of the soil ionization depends on the current amplitude along the electrode and the resultant electric field intensity surrounding the electrode. The electrical and physical parameters of the grounding electrode system are found as factors that affect the electric field intensity. In this study the electromagnetic field approach and the soil breakdown theory are taken into account to investigate the effect of the mentioned factors on soil ionization and grounding resistance. Changing the parameters of the grounding electrode system affect the electric field distribution around the electrode. Based on the conditions the grounding electrode resistance was reduced between 12% to 75% by considering the soil ionization effect.


Sign in / Sign up

Export Citation Format

Share Document