scholarly journals Nuevas estrategias para la inversión sparse de datos sísmicos prestack

2015 ◽  
Author(s):  
◽  
Daniel Omar Pérez

Uno de los objetivos centrales de la inversión de datos sísmicos prestack consiste en determinar contrastes entre las propiedades físicas de las rocas del subsuelo a partir de la información contenida en la variación en función del ángulo de incidencia de las amplitudes de las ondas sísmicas reflejadas en las interfaces geológicas. La inversión de datos sísmicos prestack es un problema mal planteado y mal condicionado, en el sentido de que pequeñas cantidades de ruido en el dato llevan a grandes inestabilidades en las soluciones estimadas. Además, debido a la naturaleza de los datos observados, que son ruidosos, incompletos y de banda limitada, coexiste el problema de la no-unicidad de las soluciones. Dichos problemas apremian la utilización de regularizaciones y restricciones con el fin de estabilizar el proceso de inversión y promover al mismo tiempo soluciones con alguna característica deseada. Las soluciones ralas, o sparse, son deseables debido a que permiten obtener reflectores bien definidos y de esa forma superar el problema de la baja resolución observada en las soluciones obtenidas por medio de métodos de inversión convencionales. En este trabajo de tesis presentamos tres nuevas estrategias basadas en la utilización de diferentes regularizaciones que estabilizan el problema de inversión y promueven soluciones sparse a partir de datos sísmicos prestack. En la primera estrategia se procede a estimar soluciones sub-óptimas del problema de inversión regularizado mediante la norma L<sub>0</sub> por medio de la utilización del algoritmo de optimización global Very Fast Simulated Annealing (VFSA). La segunda estrategia consta de dos etapas: primero se resuelve el problema de inversión regularizado mediante la norma L<sub>1</sub> por medio de un eficiente algoritmo de optimización conocido como Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) y luego se realiza un paso correctivo de las amplitudes estimadas utilizando mínimos cuadrados. Estas dos primeras estrategias permiten estimar con éxito soluciones sparse utilizando la aproximación de Shuey de dos términos, modelo que describe la variación con el ángulo de incidencia de los coeficientes de reflexión sísmica. La tercera estrategia utiliza como regularización la norma L<sub>1,2</sub>, permitiendo incorporar información a priori por medio de matrices de covarianza o de escala. En este caso se estiman soluciones sparse de los parámetros de la aproximación de Aki & Richards de tres términos y, si la información a priori disponible es adecuada, es posible obtener también una estimación de tipo blocky de los parámetros elásticos del subsuelo.

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. V99-V113 ◽  
Author(s):  
Zhong-Xiao Li ◽  
Zhen-Chun Li

After multiple prediction, adaptive multiple subtraction is essential for the success of multiple removal. The 3D blind separation of convolved mixtures (3D BSCM) method, which is effective in conducting adaptive multiple subtraction, needs to solve an optimization problem containing L1-norm minimization constraints on primaries by the iterative reweighted least-squares (IRLS) algorithm. The 3D BSCM method can better separate primaries and multiples than the 1D/2D BSCM method and the method with energy minimization constraints on primaries. However, the 3D BSCM method has high computational cost because the IRLS algorithm achieves nonquadratic optimization with an LS optimization problem solved in each iteration. In general, it is good to have a faster 3D BSCM method. To improve the adaptability of field data processing, the fast iterative shrinkage thresholding algorithm (FISTA) is introduced into the 3D BSCM method. The proximity operator of FISTA can solve the L1-norm minimization problem efficiently. We demonstrate that our FISTA-based 3D BSCM method achieves similar accuracy of estimating primaries as that of the reference IRLS-based 3D BSCM method. Furthermore, our FISTA-based 3D BSCM method reduces computation time by approximately 60% compared with the reference IRLS-based 3D BSCM method in the synthetic and field data examples.


2011 ◽  
Vol 1 (3) ◽  
pp. 264-283 ◽  
Author(s):  
Zhi-Feng Pang ◽  
Li-Lian Wang ◽  
Yu-Fei Yang

AbstractIn this paper, we propose a new projection method for solving a general minimization problems with twoL1-regularization terms for image denoising. It is related to the split Bregman method, but it avoids solving PDEs in the iteration. We employ the fast iterative shrinkage-thresholding algorithm (FISTA) to speed up the proposed method to a convergence rateO(k−2). We also show the convergence of the algorithms. Finally, we apply the methods to the anisotropic Lysaker, Lundervold and Tai (LLT) model and demonstrate their efficiency.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3074 ◽  
Author(s):  
Shulin Pan ◽  
Ke Yan ◽  
Haiqiang Lan ◽  
José Badal ◽  
Ziyu Qin

Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neural network (RNN) as deep learning method and applying backpropagation to ISTA, we have developed an RNN-like ISTA as an alternative sparse spike deconvolution algorithm. The algorithm is tested with both synthetic and real seismic data. The algorithm first builds a training dataset from existing well-logs seismic data and then extracts wavelets from those seismic data for further processing. Based on the extracted wavelets, the new method uses ISTA to calculate the reflection coefficients. Next, inspired by the backpropagation through time (BPTT) algorithm, backward error correction is performed on the wavelets while using the errors between the calculated reflection coefficients and the reflection coefficients corresponding to the training dataset. Finally, after performing backward correction over multiple iterations, a set of acceptable seismic wavelets is obtained, which is then used to deduce the sequence of reflection coefficients of the real data. The new algorithm improves the accuracy of the deconvolution results by reducing the effect of wrong seismic wavelets that are given by conventional ISTA. In this study, we account for the mechanism and the derivation of the proposed algorithm, and verify its effectiveness through experimentation using theoretical and real data.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Florin Ilarion Miertoiu ◽  
Bogdan Dumitrescu

In this paper, the Feasibility Pump is adapted for the problem of sparse representations of signals affected by Gaussian noise. This adaptation is tested and then compared to Orthogonal Matching Pursuit (OMP) and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The feasibility pump recovers the true support much better than the other two algorithms and, as the SNR decreases and the support size increases, it has a smaller recovery and representation error when compared with its competitors. It is observed that, in order for the algorithm to be efficient, a regularization parameter and a weight term for the error are needed.


Sign in / Sign up

Export Citation Format

Share Document