scholarly journals An Integrated Design of GSM and Bluetooth Ultra Wide-Band (UWB) Monopole Antenna for Wireless applications

2019 ◽  
Author(s):  
Praveen Gorla ◽  
Sushma Amirisetti ◽  
Ravuri Sai Teja ◽  
Korrapati Karthik

Wireless communication plays a major role in technology transformation into new dimensions where it require most efficient transreceivers which are basically known as antennas for establishing communication between nodes to node.There are different types of antennas used for regenerating different frequencies for different applications. In satellite communication, in air and space crafts or in missile applications where mass, heaviness, volume,budget, performance etc. are the main requirements to design antennas. Such requirements are fulfilled by the Microstrip Antennas . Microstrip Antennas are designed to meet these specifications and hence are widely used in many applications such as global system for mobile communication (GSM), the global positioning system (GPS), personal communication,etc.. A compact microstrip feed with triple band circular monopole antenna which can operate frequencies ranging over GSM (1.78 to 1.82GHz),Bluetooth (2.4 to2.48GHz) and Ultra wideband (UWB:3.10 to 10.6GHz) bands are designed and investigated for wireless applications.By a generalized circular radiating monopole with destructive ground plane,the UWB frequency operation is achieved. Further proceedings, the central part of the radiating antenna is removed by slotting it and then etching a half wavelength circular arc from the radiating patch antenna to achieve a dual band frequency operation over Bluetooth and UWB.The triple band frequency operation is realized by embedding quarter wavelength parasitic element/strip resonating at 1.8GHz placed at the slotted central position in the radiating patch antenna.In this project triple band circular monopole antenna is designed and simulated using electromagnetic simulation software HFSS(15.0).The implementation of the proposed antenna is done on FR4 dielectric substrate having a dielectric constant of 4.4 and loss tangent of 0.02. The antenna covers the three bands of operation with reflective coefficient <-10dB.The antenna also exhibits stable radiation patterns for entire UWB. As a result,integrated lower frequency bands are achieved.

2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


A printed dual broadband monopole antenna has been presented here for WLAN and WIMAX applications. The antenna is designed with the help of simulation software HFSS and proposed antenna is fabricated to verify the simulated results with the measured results. The patch of the proposed antenna consists of two identical metallic structures which are like English letter “E” and are placed face to face to each other. Now, the lower arms of E-shaped structures are connected together with a rectangular microstrip transmission line of length 15 mm and width 3.06 mm to form the proposed patch. The proposed “E” shape patch is printed on FR4 substrate of height 1.6 mm, relative permittivity εr= 4.4, and loss tangent 0.02. The ground plane of the proposed antenna consists of partial rectangular metal at opposite side of the patch. The proposed antenna achieves dual band characteristics using the proposed structure. The measured results show that the proposed structure covers the transmission bands from 2.45 GHz to 3.66 GHz with center frequency of 3.0 GHz and from 4.16 GHz to 5.94 GHz with center frequency of 5.37 GHz. There is a good impedance matching between measurement result and computer simulated results. The measured percentage bandwidths have been obtained by 39.1 % and 35.24 %, respectively. The peak gain (measured) at 3 GHz and 5.37 GHz resonant frequencies are 3 dBi and 4 dBi, respectively. This proposed antenna also exhibits with monopole like E-Plane and H-plane co-polarization radiation pattern at two center frequencies. The obtained bands are useful for WLAN and WiMAX applications.


2020 ◽  
Vol 9 (6) ◽  
pp. 2469-2476
Author(s):  
Spoorti Barigidad ◽  
Aishwarya C. Yeshawant ◽  
Sridevi Rao ◽  
Tharunya C. A. ◽  
Tanweer Ali ◽  
...  

Radio frequency identification (RFID) is a very prominent technology and is used in object-attached identification and tracking tags. In this paper a triple band monopole antenna is designed to work at 2.2-2.6 GHz (lower RFID band), 5.3-6.8 GHz and 8.7-9.5 GHz (upper RFID band) frequency ranges. The antenna design resembles a modified F-shaped radiator and is built on a low cost easily available FR4 dielectric substrate. Initially an F-shaped radiator with partial ground plane is studied which exhibits the operation at 2.6 and 6.5 GHz. Further, modifying this F-shaped radiator exhibits an additional resonance at 9.2 GHz. Fundamental characteristics such as reflection coefficient (S11), radiation pattern and 3D gain have been analyzed and good results have been obtained. Parametric analysis is carried out to fix the optimized antenna dimensions. All the simulations are carried out using the high frequency structure simulator software (HFSS). The antenna structure is easy to design and produce, and ideal for use in RFID applications.document quickly and accurately, to determine its relevance to their interests, and thus to decide whether to read the document in its entirety.


2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


2009 ◽  
Vol 23 (11-12) ◽  
pp. 1595-1601 ◽  
Author(s):  
C. Chen ◽  
Y.-C. Jiao ◽  
L. Zhang ◽  
W.-B. Zhang

Sign in / Sign up

Export Citation Format

Share Document