Compact UWB monopole antenna with reconfigurable band-notch characteristics

2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.

2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Frequenz ◽  
2013 ◽  
Vol 67 (1-2) ◽  
pp. 1-5
Author(s):  
Li Li ◽  
Zhi-Li Zhou ◽  
Jing-Song Hong

AbstractA novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz–12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz–6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz–3.8 GHz for WiMAX and 7.1 GHz–7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.


2018 ◽  
Vol 7 (5) ◽  
pp. 87-93 ◽  
Author(s):  
D. Kahina ◽  
C. Mouloud ◽  
D. Mokrane ◽  
M. Faiza ◽  
A. Rabia

This paper proposes a novel small asymmetric coplanar strip (ACS) fed tri-band monopole antenna for WLAN and WiMAX applications. To tune and create multiple resonant frequencies, the exciting strip of monopole antenna is connected to two different arms which are a J-shaped directed toward the asymmetric ground plane and an open stub. The proposed monopole antenna with a total size of 14.6 x17.5 mm2 is fabricated and tested. The measured results indicate that the antenna has impedance bandwidths for 10-dB return loss reach about 500 MHz (2.01-2.52 GHz), 230 MHz (3.48-3.71 GHz) and 1.2GHz (5.59-6.72 GHz) which cover widely the 2.4/5.8 GHz WLAN bands and the 3.5GHz WiMAX band. The simulated radiation patterns of the proposed antenna at the three resonant frequencies have a dipole-like radiation pattern in both E-and H-Planes. The compact size, the simple structure and good radiation performances of the proposed antenna makes it well-suited forthe intended applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2018 ◽  
Vol 10 (10) ◽  
pp. 1186-1195 ◽  
Author(s):  
Seyed Ramin Emadian ◽  
Javad Ahmadi-Shokouh

AbstractFrequency- and time-domain characteristics as well as indoor propagation channel impulse response of a compact dual band-notched ultra-wideband (UWB) slot antenna are investigated in this paper. The antenna consists of a narrow rectangular radiation patch and a rectangular wide slot in the modified ground plane. A pair of L-shaped stubs are connected to the radiation patch to obtain band-notched property in WLAN band and a narrow straight stub is placed on the back side of the substrate to create band-notched characteristics in X-band downlink satellite communication system. Moreover, two small parasitic strips are added to the radiation patch to enhance the bandwidth (BW) of the antenna up to 14 GHz. A comprehensive study on time-domain and indoor propagation channel characteristics of the proposed antenna is also presented throughout the paper. A ray-tracing approach based on geometrical optics is applied to analyze the indoor channel characteristics. The designed antenna not only has a wide BW and compact size but also has appropriate radiation and time-domain characteristics over the antenna operating BW. The measured and simulated results are in good agreement. These advantages make the proposed antenna as a desirable option for UWB impulse radio applications.


2015 ◽  
Vol 9 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Zhijun Tang ◽  
Xiaofeng Wu ◽  
Zaifang Xi ◽  
Shigang Hu

A simple and compact printed ultra-wideband antenna with dual-band-notched characteristics is presented. The proposed antenna is composed of a rectangular patch and a modified ground plane. The rectangular patch is etched onto a lossy FR4 substrate. A circular ring strip parasitizes the rectangular patch embedded by a U-shaped slot. Two inverted-L slits and a rectangular slit are embedded onto the ground plane. Some bandwidth enhancement and band-notched techniques are applied in the antenna structure for broadening the bandwidth and generating notches. The simulated and measured results show that the proposed antenna offers a very wider bandwidth ranging from 3.04 to 17.30 GHz, defined by the return loss less than −10 dB, with dual-notched bands of 3.30–4.20 and 5.10–5.85 GHz covering the 3.3/3.7 GHz WiMAX, 3.7/4.2 GHz C-band, and 5.2/5.8 GHz wireless local area network systems. Furthermore, the proposed antenna presents relatively high antenna gain and quasi-omnidirectional radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document