On the Relationship between Factor Analysis and Principal Component Analysis in High-Dimensions?

Author(s):  
Kentaro Hayashi ◽  
Ke-Hai Yuan
Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 213
Author(s):  
Chao Cui ◽  
Suoliang Chang ◽  
Yanbin Yao ◽  
Lutong Cao

Coal macrolithotypes control the reservoir heterogeneity, which plays a significant role in the exploration and development of coalbed methane. Traditional methods for coal macrolithotype evaluation often rely on core observation, but these techniques are non-economical and insufficient. The geophysical logging data are easily available for coalbed methane exploration; thus, it is necessary to find a relationship between core observation results and wireline logging data, and then to provide a new method to quantify coal macrolithotypes of a whole coal seam. In this study, we propose a L-Index model by combing the multiple geophysical logging data with principal component analysis, and we use the L-Index model to quantitatively evaluate the vertical and regional distributions of the macrolithotypes of No. 3 coal seam in Zhengzhuang field, southern Qinshui basin. Moreover, we also proposed a S-Index model to quantitatively evaluate the general brightness of a whole coal seam: the increase of the S-Index from 1 to 3.7, indicates decreasing brightness, i.e., from bright coal to dull coal. Finally, we discussed the relationship between S-Index and the hydro-fracturing effect. It was found that the coal seam with low S-Index values can easily form long extending fractures during hydraulic fracturing. Therefore, the lower S-Index values indicate much more favorable gas production potential in the Zhengzhuang field. This study provides a new methodology to evaluate coal macrolithotypes by using geophysical logging data.


2018 ◽  
Vol 10 (2) ◽  
pp. 312 ◽  
Author(s):  
Ana-Maria Săndică ◽  
Monica Dudian ◽  
Aurelia Ştefănescu

EU countries to measure human development incorporating the ambient PM2.5 concentration effect. Using a principal component analysis, we extract the information for 2010 and 2015 using the Real GDP/capita, the life expectancy at birth, tertiary educational attainment, ambient PM2.5 concentration, and the death rate due to exposure to ambient PM2.5 concentration for 29 European countries. This paper has two main results: it gives an overview about the relationship between human development and ambient PM2.5 concentration, and second, it provides a new quantitative measure, PHDI, which reshapes the concept of human development and the exposure to ambient PM2.5 concentration. Using rating classes, we defined thresholds for both HDI and PHDI values to group the countries in four categories. When comparing the migration matrix from 2010 to 2015 for HDI values, some countries improved the development indicator (Romania, Poland, Malta, Estonia, Cyprus), while no downgrades were observed. When comparing the transition matrix using the newly developed indicator, PHDI, the upgrades observed were for Denmark and Estonia, while some countries like Spain and Italy moved to a lower rating class due to ambient PM2.5 concentration.


Sign in / Sign up

Export Citation Format

Share Document