Cyclic Damage to PVA Microfibre Embedded in Cementitious Matrix in Alternating Tension-Compression Regime

Author(s):  
Majid Ranjbarian ◽  
Viktor Mechtcherine
2019 ◽  
Vol 85 (9) ◽  
pp. 61-65
Author(s):  
N. A. Makhutov

We consider and analyze general methodological issues regarding the strength and endurance (life-time) of the materials and structure elements under a combined effect of various force, deformation and temperature factors. The Journal "Zavodskaya laboratoriya. Diagnostika materialov" (Industrial laboratory. Diagnostics of materials) has launched systematic publications on this problematic since 2018. For many decades, domestic and foreign laboratory studies have gleaned to a traditional methodology for obtaining initial curves of the long-term and cyclic strength that related the breaking stresses with time or number of cycles. These curves, with the characteristic sections and break points, separating the areas of elastic and inelastic (plastic strain or creep strain) strain, are used in analysis of long-term and cyclic damage. Using the elementary linear law of damage summation, it is possible to calculate at a first approximation the strength and endurance under varying conditions of loading. Stepping up the requirements to the accuracy of calculations necessitates a transition from force fracture criteria (at stresses a) to deformation criteria (in elastic and inelastic deformations e). Thus, it becomes possible to construct and use a unified expression for the curve of the long-term cyclic fracture (taking into account the temporal x and cyclic N factors) and a long-term cyclic damage. With such approach it is possible to remain the linear law of damage summation though those damages are obviously nonlinear. The goal of the study is to continue and support the discussion of the most complex problems of a comprehensive assessment of the strength, resource, survivability and safety of high-risk engineering equipment within the journal pages.


Author(s):  
Fayu Wang ◽  
Nicholas Kyriakides ◽  
Christis Chrysostomou ◽  
Eleftherios Eleftheriou ◽  
Renos Votsis ◽  
...  

AbstractFabric reinforced cementitious matrix (FRCM) composites, also known as textile reinforced mortars (TRM), an inorganic matrix constituting fibre fabrics and cement-based mortar, are becoming a widely used composite material in Europe for upgrading the seismic resistance of existing reinforced concrete (RC) frame buildings. One way of providing seismic resistance upgrading is through the application of the proposed FRCM system on existing masonry infill walls to increase their stiffness and integrity. To examine the effectiveness of this application, the bond characteristics achieved between (a) the matrix and the masonry substrate and (b) the fabric and the matrix need to be determined. A series of experiments including 23 material performance tests, 15 direct tensile tests of dry fabric and composites, and 30 shear bond tests between the matrix and brick masonry, were carried out to investigate the fabric-to-matrix and matrix-to-substrate bond behaviour. In addition, different arrangements of extruded polystyrene (XPS) plates were applied to the FRCM to test the shear bond capacity of this insulation system when used on a large-scale wall.


2014 ◽  
Vol 48 ◽  
pp. 9-18 ◽  
Author(s):  
Daniel Hernández-Cruz ◽  
Craig W. Hargis ◽  
Sungchul Bae ◽  
Pierre A. Itty ◽  
Cagla Meral ◽  
...  

2009 ◽  
pp. NA-NA ◽  
Author(s):  
H. R. Pakravan ◽  
M. Jamshidi ◽  
M. Latifi
Keyword(s):  

2021 ◽  
Vol 28 (3) ◽  
pp. 88-102
Author(s):  
Assim Arif ◽  
Saad Raoof

Textile Reinforced Concrete (TRC) can be used as independent structural elements due to its high loading capacity and proper to product light weight and thin walled structural elements. In this study, the bending behavior of TRC plates that reinforced with dry carbon fiber textile and exposed to high temperatures was experimentally studied under 4-points bending loading. The examined parameters were; (a) number of textile fiber reinforcements layers 1, 2 and 3 layers; (b) level of high temperatures 20°C, 200°C, 300°C, and 400°C. Firstly, the mechanical properties of the cementitious matrix and the tensile properties of TRC coupons at each predefined temperature were evaluated. The results showed that the ultimate tensile stress of the TRC coupons did not affect up to 200°C, however, a significant reduction observed at 300°C and 400°C by 19% and 24% respectively. Regarding the compressive strength and flexural strength of the cementitious matrix, the degradation was not severe until 200°C, while it became critical at 400 °C (23% and 22% respectively). The result of the bending of TRC plates showed that doubling and tripling textile fiber reinforcements layers improved the flexural loading. In general, increasing the level of temperatures resulted in decrease in the flexural capacity of TRC plates. The highest decrease recorded for the specimen reinforced with 1-layer of carbon fiber textile subjected to 400 °C and was 33%.


2019 ◽  
Vol 197 ◽  
pp. 626-640 ◽  
Author(s):  
Abdelhadi Bouchikhi ◽  
Mahfoud Benzerzour ◽  
Nor-Edine Abriak ◽  
Walid Maherzi ◽  
Yannick Mamindy-Pajany

Sign in / Sign up

Export Citation Format

Share Document