scholarly journals Kinetika Fotodegradasi Remazol Yellow Menggunakan Fotokatalis ZnO dan ZnO-Ag

Jurnal MIPA ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 68
Author(s):  
Agres K. Taringan ◽  
Audy D. Wuntu ◽  
Henry F. Aritonang

Telah dilakukan penelitian tentang kinetika fotodegradasi remazol yellow dengan menggunakan ZnO dan ZnO yang disisipi 1%, 3%, 5%, 7%, dan 9% Ag yang disintesis dengan metode kopresipitasi. Eksperimen kinetika dilakukan melalui penentuan konsentrasi remazol yellow yang tersisa setelah interaksi ZnO dan ZnO-Ag dengan larutan remazol yellow yang disinari UV selama 0, 20, 40, 60, 80, 100, 120 dan 140 menit. Selanjutnya data dianalisis mengikuti model kinetika reaksi orde pertama. Hasil penelitian menunjukkan bahwa laju reaksi fotodegradasi oleh ZnO meningkat dengan penambahan konsentrasi dopan AgA research on photodegradation kinetics of remazol yellow using ZnO and Ag-doped ZnO (1, 3, 5, 7 and 9 wt% Ag) synthesized by co-precipitation method had been studied. Kinetics experiment was performed by determining the concentration of remazol yellow remained after interaction of ZnO and ZnO-Ag with remazol yellow solution that were irradiated by UV-light at 0, 20, 40, 60, 80, 100, 120 and 140 minutes. Data obtained was analyzed using firs-order kinetics model. The results showed that photodegradation rate was increased with the increasing Ag concentration.

2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2015 ◽  
Vol 1123 ◽  
pp. 295-302 ◽  
Author(s):  
Nur Afifah ◽  
Siti Adriani ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

The present study compares the photocatalytic decolorization ability of Fe-doped ZnO modified both natural zeolite and montmorillonite towards aqueous solution of organic dyes such as methylene blue and methyl orange under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and electron spin resonance spectroscopy. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to natural zeolite.


2015 ◽  
Vol 1123 ◽  
pp. 241-246 ◽  
Author(s):  
Annisa Noorhidayati ◽  
Siti Adriani ◽  
Rosari Saleh

Fe- and Co-doped ZnO with various doping concentrations have been synthesized by co-precipitation method in the presence of sodium dodecyl sulfate as anionic surfactant. The obtained sample powders were characterized by X-ray diffraction, Fourier transform infrared absorption, UV-visible diffuse reflectance spectroscopy, electron spin resonance spectroscopy and Brunauer-Emmet-Teller (BET) method. The photocatalytic activity was evaluated by observing the decolorization of methylene blue under UV light irradiation. The results revealed that the addition of a dopant atom significantly enhanced the photocatalytic activity.


2015 ◽  
Vol 1112 ◽  
pp. 194-200
Author(s):  
Nadia Febiana Djaja ◽  
Rosari Saleh

The present study compares the photocatalytic decolorization ability of bare Mn-doped ZnO and montmorillonite modified Mn-doped ZnO nanoparticles towards aqueous solution of organic dyes (methylene blue and malachite green) under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, electron spin resonance, and diffuse reflectance spectroscopy. Comparison of degradation efficiency demonstrated that montmorillonite modified Mn-doped ZnO nanoparticles exhibited higher activity than bare Mn-doped ZnO nanoparticles.


2020 ◽  
Vol 81 (6) ◽  
pp. 1296-1307
Author(s):  
R. Jeyachitra ◽  
S. Kalpana ◽  
T. S. Senthil ◽  
Misook Kang

Abstract Methylene blue (MB) dye is the most common harmful, toxic, and non-biodegradable effluent produced by the textile industries. The present study investigates the effect of zinc oxide (ZnO) nanoparticles (NPs) and Ag–Ni doped ZnO NPs on the performance of photocatalytic degradation of MB dye. Pure ZnO and Ag–Ni doped ZnO NPs are synthesized using the co-precipitation method. The crystalline nature and surface morphology of the synthesized pure ZnO and Ag–Ni doped ZnO NPs was characterized by powder X-ray diffraction, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) analysis. The presence of spherical-like morphologies was confirmed from SEM and HRTEM analysis. The presence of Ni–O and Zn–O bands in the synthesized materials was found by Fourier transform infrared (FTIR) spectroscopy analysis. The MB dye was degraded under UV-light exposure in various pH conditions. The Ag (0.02%)–Ni doped ZnO NPs exhibits highest photocatalytic activity of 77% under pH 4.


2014 ◽  
Vol 911 ◽  
pp. 120-125 ◽  
Author(s):  
Randi Azmi ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic degradation of methylene blue has been investigated using natural zeolite modified Mn-doped ZnO nanoparticles synthesized by co-precipitation method. Comparison of degradation efficiency demonstrated that natural zeolite modifiedMn-doped ZnO exhibited higher activity than bare Mn-doped ZnO.


2015 ◽  
Vol 827 ◽  
pp. 25-30
Author(s):  
Raynaldi Philipus ◽  
Annisa Noorhidayati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

The present study compares the photocatalytic degradation of methylene blue in the presence of natural zeolite supported Ni-doped ZnO and bare Ni-doped ZnO nanoparticles. The photocatalyst was prepared by co-precipitation method and the photocatalytic activity of the photocatalyst was investigated under UV light irradiation. The results showed that the photocatalytic efficiency of zeolite supported Ni-doped ZnO nanoparticles is better than that of bare Ni-doped ZnO nanoparticles. The influence of experimental parameters on the photodegradation of methylene blue was studied and it was observed that photocatalytic activity varied with pH, initial methylene blue concentration and the amount of photocatalyst. The scavenger technique shows that electron plays an important role in the bare Ni-doped ZnO, while in zeolite supported Ni-doped ZnO,●OH is the prominent active species.


2015 ◽  
Vol 1123 ◽  
pp. 289-294
Author(s):  
Annisa Noorhidayati ◽  
Raynaldi Philipus ◽  
Mia Putri Rachmawati ◽  
Rosari Saleh

A series of semiconductor nanophotocatalyst based on transition metal (Ni and Cr) doped ZnO nanoparticles have been synthesized in the presence of cetril methyl ammonium bromide (CTAB) by co-precipitation method. Samples were characterized by X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX), Field Emission Scanning Electron Microscope (FESEM), and Brunauer-Emmet-Teller (BET) method. The resulting materials were explored for the decolorization of 4 different organic dyes (methyl orange, methylene blue, malachite green, and congo red) under UV light irradiation. The resulting materials exhibited relatively higher photocatalytic decolorization than bare Ni- and Cr-doped ZnO nanoparticles with similar doping concentration


Sign in / Sign up

Export Citation Format

Share Document