scholarly journals Classification of Sentiments on online products using Deep Learning Model – RNN

Due to advancement of technology there is a large usage of social media which leads to demand for data in the web. This data is very helpful to categorize the opinions into different sentiments and general evaluating the mood of public. The current research contributions are towards to detect the complete separation of sentence regardless of their aspects. The computational observation of sentiments and opinions stated by people in written language. Examination of defies presented by informal and crisp micro blogging created the origins. The proposed work targets building up a model for conclusion characterization that investigates the product features. It is also addresses domain explicit vocabularies to offer an domain arranged methodology and subsequently dissect and extricate the purchaser opinion towards well known advanced cell marks in the course of recent years. This model describes the use of deep learning model such as recurrent neural network to get better accuracy over traditional machine learning methods such as Random forest, Naïve bayes. The RNN model got training accuracy 97.6% and testing accuracy 95.6% which are much better compared to traditional machine learning models.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shixiang Zhang ◽  
Shuaiqi Huang ◽  
Hongkai Wu ◽  
Zicong Yang ◽  
Yinda Chen

Melanoma is considered to be one of the most dangerous human malignancy, which is diagnosed visually or by dermoscopic analysis and histopathological examination. However, as these traditional methods are based on human experience and implemented manually, there have been great limitations for general usability in current clinical practice. In this paper, a novel hybrid machine learning approach is proposed to identify melanoma for skin healthcare in various cases. The proposed approach consists of classic machine learning methods, including convolutional neural networks (CNNs), EfficientNet, and XGBoost supervised machine learning. In the proposed approach, a deep learning model is trained directly from raw pixels and image labels for classification of skin lesions. Then, solely based on modeling of various features from patients, an XGBoost model is adopted to predict skin cancer. Following that, a diagnostic system which composed of the deep learning model and XGBoost model is developed to further improve the prediction efficiency and accuracy. Different from experience-based methods and solely image-based machine learning methods, the proposed approach is developed based on the theory of deep learning and feature engineering. Experiments show that the hybrid model outperforms single model like the traditional deep learning model or XGBoost model. Moreover, the data-driven-based characteristics can help the proposed approach develop a guideline for image analysis in other medical applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Yao Huang ◽  
Justin Bo-Kai Hsu ◽  
Tzong-Yi Lee

Abstract Succinylation is a type of protein post-translational modification (PTM), which can play important roles in a variety of cellular processes. Due to an increasing number of site-specific succinylated peptides obtained from high-throughput mass spectrometry (MS), various tools have been developed for computationally identifying succinylated sites on proteins. However, most of these tools predict succinylation sites based on traditional machine learning methods. Hence, this work aimed to carry out the succinylation site prediction based on a deep learning model. The abundance of MS-verified succinylated peptides enabled the investigation of substrate site specificity of succinylation sites through sequence-based attributes, such as position-specific amino acid composition, the composition of k-spaced amino acid pairs (CKSAAP), and position-specific scoring matrix (PSSM). Additionally, the maximal dependence decomposition (MDD) was adopted to detect the substrate signatures of lysine succinylation sites by dividing all succinylated sequences into several groups with conserved substrate motifs. According to the results of ten-fold cross-validation, the deep learning model trained using PSSM and informative CKSAAP attributes can reach the best predictive performance and also perform better than traditional machine-learning methods. Moreover, an independent testing dataset that truly did not exist in the training dataset was used to compare the proposed method with six existing prediction tools. The testing dataset comprised of 218 positive and 2621 negative instances, and the proposed model could yield a promising performance with 84.40% sensitivity, 86.99% specificity, 86.79% accuracy, and an MCC value of 0.489. Finally, the proposed method has been implemented as a web-based prediction tool (CNN-SuccSite), which is now freely accessible at http://csb.cse.yzu.edu.tw/CNN-SuccSite/.


JAMIA Open ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Armando D Bedoya ◽  
Joseph Futoma ◽  
Meredith E Clement ◽  
Kristin Corey ◽  
Nathan Brajer ◽  
...  

Abstract Objective Determine if deep learning detects sepsis earlier and more accurately than other models. To evaluate model performance using implementation-oriented metrics that simulate clinical practice. Materials and Methods We trained internally and temporally validated a deep learning model (multi-output Gaussian process and recurrent neural network [MGP–RNN]) to detect sepsis using encounters from adult hospitalized patients at a large tertiary academic center. Sepsis was defined as the presence of 2 or more systemic inflammatory response syndrome (SIRS) criteria, a blood culture order, and at least one element of end-organ failure. The training dataset included demographics, comorbidities, vital signs, medication administrations, and labs from October 1, 2014 to December 1, 2015, while the temporal validation dataset was from March 1, 2018 to August 31, 2018. Comparisons were made to 3 machine learning methods, random forest (RF), Cox regression (CR), and penalized logistic regression (PLR), and 3 clinical scores used to detect sepsis, SIRS, quick Sequential Organ Failure Assessment (qSOFA), and National Early Warning Score (NEWS). Traditional discrimination statistics such as the C-statistic as well as metrics aligned with operational implementation were assessed. Results The training set and internal validation included 42 979 encounters, while the temporal validation set included 39 786 encounters. The C-statistic for predicting sepsis within 4 h of onset was 0.88 for the MGP–RNN compared to 0.836 for RF, 0.849 for CR, 0.822 for PLR, 0.756 for SIRS, 0.619 for NEWS, and 0.481 for qSOFA. MGP–RNN detected sepsis a median of 5 h in advance. Temporal validation assessment continued to show the MGP–RNN outperform all 7 clinical risk score and machine learning comparisons. Conclusions We developed and validated a novel deep learning model to detect sepsis. Using our data elements and feature set, our modeling approach outperformed other machine learning methods and clinical scores.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


Author(s):  
Yong-Yeon Jo ◽  
Joon-myoung Kwon ◽  
Ki-Hyun Jeon ◽  
Yong-Hyeon Cho ◽  
Jae-Hyun Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document