scholarly journals Shaking Table Test on Different Positions of Multiple Tuned Liquid Damper

Earthquake can cause many problems to the structures, which lead to buildings collapse and may takes humans life. It is a nature’s hazard that cannot be stop. One of the effort is by introducing the damping system to the buildings where the energy of the system is slowly reduced until the vibration of the system is totally eliminated and the system is brought to rest. Several techniques are available nowadays, however passive control system has advantage in term of cost compare to other systems. Multiple Tuned Liquid Damper (MTLD) is a passive system that traditionally made of several rigid tanks filled with water, usually placed on top of a building. The energy will dissipates through the sloshing and wave-breaking of the liquid once the earthquake strike the buildings. Shaking table tests are carried out on a two-bay, two-story steel frame with water tanks for different location. In this test, the displacement and acceleration for top and base are studied.

2014 ◽  
Vol 20 (45) ◽  
pp. 539-544
Author(s):  
Toshiaki SATO ◽  
Takenori HIDA ◽  
Jun KATO ◽  
Michio IGUCHI ◽  
Yuichi MASAKI ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shi Yan ◽  
Jian Niu ◽  
Peng Mao ◽  
Gangbing Song ◽  
Wei Wang

Mechanical properties of shape memory alloy (SMA) wires were experimentally researched in this paper, and an energy dissipater made of SMA wire cable was designed and applied in a steel frame structure model by using superelasticity characteristics of SMAs to passively reduce dynamic responses of the steel frame structure under seismic load. For the characteristics of large relative displacements between the stories of the steel frame structure on both diagonal ends and the consideration of initial prestrain effects of the SMA cables, three kinds of the whole control, the part control, and no control of the shaking table tests and numerical simulations were carried, respectively. Through the results of the shaking table test and numerical simulation analysis, the dynamic responses such as the maximum displacement, velocity, and acceleration at the top layer of the steel frame structure applied with SMA cables are significantly decreased compared with the no control case. However, considering the premise of both effectiveness and efficiency, the part control effect is superior to the whole control. In many cases, it can meet the control requirement of reducing the maximum displacement and acceleration, while the superelasticity of SMAs can be sufficiently played, realizing the passive control purposes of the steel frame structure based on the energy dispassion through the application of the SMA cables. The proposed method has broad application prospects in the passive control field of building structures.


2014 ◽  
Vol 580-583 ◽  
pp. 1776-1781
Author(s):  
Guo Chen Zheng ◽  
Hang Li Xu

The shaking table tests are conducted on a 5-floor steel frame model with a scale down of 1:6. The traditional anti-seismic structure and isolation structures with isolation layer in different position are adopted. The results indicate that the natural vibration periods of isolation structure are longer than anti-seismic structure, and when the isolation layer is located in a lower position, the period becomes longer and the damping effect is better.


2011 ◽  
Vol 261-263 ◽  
pp. 1619-1624
Author(s):  
Pei Zhen Li ◽  
Jing Meng ◽  
Peng Zhao ◽  
Xi Lin Lu

Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.


2007 ◽  
Vol 353-358 ◽  
pp. 2652-2655 ◽  
Author(s):  
Ki Pyo You ◽  
Young Moon Kim ◽  
Cheol Min Yang ◽  
Dong Pyo Hong

Wind-induced vibration of tall buildings have been of interest in engineering for a long time. Wind-induced vibration of a tall building can be most effectively controlled by using passive control devices. The tuned liquid damper(TLD) is kind of a passive mechanical damper, which relies on the sloshing liquid in a rigid tank. TLD has been successfully employed in practical mitigation of undesirable structural vibrations because it has several potential advantages: low costs, easy installation in existing structures, and effectiveness even against small-amplitude vibrations. Shaking table experiments were conducted to investigate the characteristics of the shallow water sloshing motion in a rectangular tank. To increase the damping ratio of the rectangular water tank, triangle sticks were installed at the bottom of water tank. This installation increased the damping ratio by amaximum of 40-70%.


Sign in / Sign up

Export Citation Format

Share Document