scholarly journals Near Dry and Powder Mixed Near Dry Electric Discharge Machining

Electric discharge machining (EDM) is a non conventional machining method to fabricate very tough and hard materials. Although EDM has played a vital role in machining industry but with advancement of technology, alternative advanced methods of machining have been evolved such as near dry EDM (ND-EDM) and powder mixed near dry EDM (PMND-EDM). These technologies have been proven more efficient than traditional EDM in terms of machining performance characteristics such as higher material removal rate (MRR), better surface finish (Ra) and low tool wear rate (TWR) with high tolerance quality products. In this study an approach has been made to draw experimental comparison between ND-EDM and PMND-EDM in terms of MRR, SR and TWR. The experimental result and analysis revealed that PMND-EDM was better machining method than ND-EDM as in the former technique, the M RR increased by 45.04 % while SR and TWR reduced by 45.33 % and 60.60% respectively

2019 ◽  
Vol 969 ◽  
pp. 715-719
Author(s):  
G. Gowtham Reddy ◽  
Balasubramaniyan Singaravel ◽  
K. Chandra Shekar

Electric Discharge Machining (EDM) is used to machine complex geometries of difficult to cut materials in the area of making dies, mould and tools. Currently, hydrocarbon based dielectric fluids are used in EDM and which plays major role for material removal and it emits harmful emission. In this work, vegetable oil is attempted as dielectric fluid and their performance are studied during processing of AISI P20 steel. The effect of pulse on time (Pon) , pulse off time (Poff), and current (A) on Material Removal Rate (MRR), Tool wear rate (TWR) and surface roughness (SR) are analyzed. The result showed that vegetable oils are given good machining performance than conventional dielectric fluids. These proposed dielectric fluids are biodegradable eco friendly and enhance sustainability in EDM process.


Author(s):  
M. Kalayarasan ◽  
M. Murali

Silicon Nitride-Titanium Nitride ceramic composites are newly advanced material having the properties of high hardness, strength, toughness and low density. These kinds of materials are challenging to machine by conventional machining process because it causes severe tool wear due to its properties. Since the materials can be machined by non-conventional machining process like laser cutting and water jet, but these processes are limited. Electric discharge machining shows higher capability for cutting complex shapes with high accuracy. The present work focuses to optimize the process parameter for maximum material removal rate and minimum electrode wear rate. The experimental studies were conducted under varying pulse on time, pulse off time, dielectric pressure and discharge current. Taguchi L9 orthogonal array was used to design the experiments. Grey relational analysis and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to optimize the process parameter and the results were validated by the confirmation tests. Thus the machining parameter for electric discharge machine was optimized to achieve higher material removal rate and lower rate on electrode. The result shows that the proposed technique is being effective to optimize the machining parameter for electric discharge machining process.


Author(s):  
Sanjeev Kumar ◽  
Ajay Batish ◽  
Rupinder Singh ◽  
TP Singh

In the present study, the effect of cryogenic treatment on the machining performance of Ti–5Al–2.5Sn alpha titanium alloy was investigated during electric discharge machining. Untreated, shallow cryogenically treated (−110 ℃), and deep cryogenically treated (−184 ℃) titanium alloys were machined by varying current and pulse-on-time. The machining performance was measured in terms of higher material removal rate and microhardness and low tool wear rate and surface roughness. The results showed a significant improvement in the machining performance with deep cryogenically treated alloy when compared with shallow and untreated alloy. Current and pulse-on-time also affected the machinability of titanium alloy. Higher material removal rate and microhardness were observed when titanium alloy was machined at high current and pulse-on-time. During machining, carbon was deposited on the machined surface due to the breakdown of hydrocarbon dielectric at high temperature thereby, affecting its properties.


2012 ◽  
Vol 717-720 ◽  
pp. 861-864 ◽  
Author(s):  
Hideki Yamada ◽  
Satarou Yamaguchi ◽  
Norimasa Yamamoto ◽  
Tomohisa Kato

A new method based on electric discharge machining (EDM) was developed for cutting a silicon carbide (SiC) ingot. The EDM method is a very useful technique to cut hard materials like SiC. By cutting with the EDM method, kerf loss and roughness of sample are generally smaller than those obtained by cutting with a diamond saw. Moreover, the warpage is smaller than that by the diamond saw cutting, and the cutting speed can be 10 times faster than that of the diamond saw at the present time. We used wires of 50 mm and 100 mm diameters in the experiments, and the experimental results of the cutting speed and the kerf losses are presented. The kerf loss of the 50 mm wire is less than 100 mm, and the cutting speed is about 0.8 mm/min for the thickness of a 6 mm SiC ingot. If we can maintain the cutting speed, the slicing time of a 2 inches diameter ingot would be about seven hours.


2011 ◽  
Vol 189-193 ◽  
pp. 3153-3157
Author(s):  
Yan Zhen Zhang ◽  
Yong Hong Liu ◽  
Ren Jie Ji ◽  
Bao Ping Cai

In this paper, the EDM performance of water-in-oil (W/O) emulsions dielectric with different surfactant concentration is investigated by correlated to its physical properties, such as viscosity and droplets size, which is predominantly determined by the surfactant concentration. Experimental results show that the stability of the W/O emulsions increases with increasing surfactant concentration, whereas the EDM performance deteriorates with increasing surfactant concentration. So, taking a comprehensively consideration of the emulsion stability and EDM performance, the concentration of surfactant must be appropriately selected.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ushasta Aich ◽  
Simul Banerjee

Optimum control parameter setting in complex and stochastic type processes is one of the most challenging problems to the process engineers. As such, effective model development and determination of optimal operating conditions of electric discharge machining process (EDM) are reasonably difficult. In this apper, an easy to handle optimization procedure, weight-varying multiobjective simulated annealing, is proposed and is applied to optimize two conflicting type response parameters in EDM—material removal rate (MRR) and average surface roughness (Ra) simultaneously. A solution set is generated. The Pareto optimal front thus developed is further modeled. An inverse solution procedure is devised so that near-optimum process parameter settings can be determined for specific need based requirements of process engineers. The results are validated.


Sign in / Sign up

Export Citation Format

Share Document