scholarly journals L-Index Based Weak Area Identification of IEEE 118 Bus System using Dynamic Simulation in PSS®E

Voltage stability is a relevant part of power system stability analysis ever since many voltage collapse incidences have occurred at different regions of the world. In this paper we take up IEEE 118 bus system as it represents a close approximation of standard Grid system. This IEEE 118-bus system has fixed number of predefined generators, synchronous condensers, transmission lines, transformers and loads. In this work IEEE 118 bus system is simulated and load flow simulation is computed using the software PSS®E. The weak buses of the IEEE standard 118 bus network are predicted with the help of L-Index Algorithm in MATLAB. Further dynamic simulation is also performed in the weak buses obtained from L-Index as it opens up scope of more detail analysis of the system. An initial transient disturbance is then introduced in the weak buses and then the resultant maximum frequency deviation and the recovery time of the voltage is computed which finally helps to detect the weak areas in the transmission network. Further Critical Clearing time of the weakest bus is also computed.

2020 ◽  
Vol 10 (4) ◽  
pp. 5925-5932
Author(s):  
N. Anwar ◽  
A. H. Hanif ◽  
H. F. Khan ◽  
M. F. Ullah

The determination of the transient stability of an electric power system is a crucial step in power system analysis. This paper investigates the transient stability of an IEEE-9 bus system consisting of three generators and nine buses. At first, a load flow analysis is conducted in order to determine the pre-fault conditions. Secondly, fault analysis is performed to analyze post fault conditions like the fast fault clearing time and load switching in order to determine the system stability. For transient stability analysis, Euler and Runga methods are compared and applied on the frequency and rotor angle of the system to analyze the system variations under different fault conditions. The simulations were done on the Power World Simulator (PWS) software. It is concluded that Critical Fault Clearing Time (CFCT) is a very important factor in keeping the power system within the stability bounds. A slight increase in Clearing Time (CT) from the critical value causes un-synchronism.


The instability of power transmission system in Nigeria is the concern of many individual and that is what this paper wants to address. The first stage was to analyze the effect of static synchronous compensator (STATCOM) on power transmission stability. In doing that, the three phase fault was introduced to the system at line 4-5. The Load flow simulation analysis was carried out according to IEEE 9 bus system. The power transmission system model was developed and simulated using MATLAB/SIMULINK software. The result of the simulation shows that Bus 5 was detected to violate the voltage limit of 0.95 < V< 1.05 p.u. having a voltage magnitude of 0.8875p.u. The per unit Voltage magnitude of power system with STATCOM and without STATCOM was calculated. From the result, the voltage magnitude without STATCOM was 0.8875p.u while that with STATCOM was 1.01p.u. The total active power Loss without STATCOM was 324.02MW while that with STATCOM was 322.53MW. Therefore the percentage of power system improvement is 0.23% when STATCOM was incorporated. Finally, Power transmission system improves when STATCOM was applied.


Author(s):  
Ajith M ◽  
Dr. R. Rajeswari

Power-flow studies are of great significance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. Technologies such as renewables and power electronics are aiding in power conversion and control, thus making the power system massive, complex, and dynamic. HVDC is being preferred due to limitations in HVAC such as reactive power loss, stability, current carrying capacity, operation and control. The HVDC system is being used for bulk power transmission over long distances with minimum losses using overhead transmission lines or submarine cable crossings. Recent years have witnessed an unprecedented growth in the number of the HVDC projects. Due to the vast size and inaccessibility of transmission systems, real time testing can prove to be difficult. Thus analyzing power system stability through computer modeling and simulation proves to be a viable solution in this case. The motivation of this project is to construct and analyze the load flow and short circuit behavior in an IEEE 14 bus power system with DC link using MATLAB software. This involves determining the parameters for converter transformer, rectifier, inverter and DC cable for modelling the DC link. The line chosen for incorporation of DC link is a weak bus. This project gives the results of load flow and along with comparison of reactive power flow, system losses, voltage in an AC and an AC-DC system.


2022 ◽  
Vol 28 (1) ◽  
pp. 52-64
Author(s):  
Truska Khalid Mohammed Salih ◽  
Zozan Saadallah Hussain ◽  
Firas Saaduldeen Ahmed

Nowadays power systems are huge networks that consist of electrical energy sources, static and lumped load components, connected over long distances by A.C. transmission lines. Voltage improvement is an important aspect of the power system. If the issue is not dealt with properly, may lead to voltage collapse.  In this paper, HVDC links/bipolar connections were inserted in a power system in order to improve the voltage profile. The load flow was simulated by Electrical Transient Analyzer Program (ETAP.16) program in which Newton- Raphson method is used. The load flow simulation studies show a significant enhancement of the power system performance after applying HVDC links on Kurdistan power systems. The bus voltages are significantly increased after connecting High Voltage Direct Current.


Author(s):  
Madhan Kumar V ◽  
Dr. V. Prasanna Moorthy

In the deregulated power system, it would be difficult to assess and evaluate the prices for transmission lines in the power factor-based approach. In the Indian power sector, different electrical power users follow a regional price method of wheeling power rates. Because of the policy change, the postage stamp system is no longer suitable for the Indian electricity generation. It is because nonlinear power flow is very influential in creating prices between transmission lines. The MW-mile method is used for real power wheeling price assessment, and MVA-mile method is employed for the accurate and reactive power wheeling price assessment. For various flow-based processes to be efficient, decision-makers should consider the different optimization techniques. This paper proposes a new method by which wheeling prices can be allocated for the Indian utility IEEE 14-bus system using the MVA-mile and MW-mile method based on the PSO algorithm approach for optimum power flow calculation In this paper, MW-Mile based, MVA-Mile based incremental cost of power demand addition and power factor-based approach are utilised. Sensitivity analysis will take place. It is also pertinent to study the DC load flow based costs.


2021 ◽  
Vol 335 ◽  
pp. 02006
Author(s):  
Ahmad Adel Alsakati ◽  
Chockalingam Aravind Vaithilingam ◽  
Jamal Alnasseir

The use of wind energy is increased due to the high demand for sustainable energy. The penetration of wind energy in electrical networks might have several effects on load flow and power system stability. In this research, the transient stability of the IEEE 9-Bus system integrated with Doubly Fed Induction Generator (DFIG) is analyzed. Additionally, different penetration levels of a wind farm are considered. With a 5% penetration of wind energy, the maximum power angle of the synchronous generator is around 129 deg, which is quite similar to the existing system. In contrast, the power angle increases to 140 deg after adding more wind turbines with 15% wind farm penetration. Then, the system loses stability with a 25% penetration of wind energy. The results indicate that the high penetration of wind energy has a destabilizing impact on the studied network. Moreover, the location of the wind farm affects transient stability. This research intends to contribute towards assessing the stability of the power system integrated DFIG. Hence, this study will support the increase of using wind energy in power systems rather than conventional power plants and evaluate the stability to enable the reliability of alternative energy sources in the grid.


1995 ◽  
Vol 115 (5) ◽  
pp. 479-486
Author(s):  
Naoki Kobayashi ◽  
Takeshi Yamada ◽  
Hiroshi Okamoto ◽  
Yasuyuki Tada ◽  
Atsushi Kurita ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2910
Author(s):  
Stefano Rinaldo  ◽  
Andrea Ceresoli  ◽  
Domenico Lahaye  ◽  
Marco Merlo  ◽  
Miloš  Cvetković ◽  
...  

The upward trends in renewable energy penetration, cross-border flow volatility and electricity actors’ proliferation pose new challenges in the power system management. Electricity and market operators need to increase collaboration, also in terms of more frequent and detailed system analyses, so as to ensure adequate levels of quality and security of supply. This work proposes a novel distributed load flow solver enabling for better cross border flow analysis and fulfilling possible data ownership and confidentiality arrangements in place among the actors. The model exploits an Inexact Newton Method, the Newton–Krylov–Schwarz method, available in the portable, extensible toolkit for scientific computation (PETSc) libraries. A case-study illustrates a real application of the model for the TSO–TSO (transmission system operator) cross-border operation, analyzing the specific policy context and proposing a test case for a coordinated power flow simulation. The results show the feasibility of performing the distributed calculation remotely, keeping the overall simulation times only a few times slower than locally.


Sign in / Sign up

Export Citation Format

Share Document