scholarly journals Load Flow Analysis in Hybrid AC-DC Transmission Network

Author(s):  
Ajith M ◽  
Dr. R. Rajeswari

Power-flow studies are of great significance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. Technologies such as renewables and power electronics are aiding in power conversion and control, thus making the power system massive, complex, and dynamic. HVDC is being preferred due to limitations in HVAC such as reactive power loss, stability, current carrying capacity, operation and control. The HVDC system is being used for bulk power transmission over long distances with minimum losses using overhead transmission lines or submarine cable crossings. Recent years have witnessed an unprecedented growth in the number of the HVDC projects. Due to the vast size and inaccessibility of transmission systems, real time testing can prove to be difficult. Thus analyzing power system stability through computer modeling and simulation proves to be a viable solution in this case. The motivation of this project is to construct and analyze the load flow and short circuit behavior in an IEEE 14 bus power system with DC link using MATLAB software. This involves determining the parameters for converter transformer, rectifier, inverter and DC cable for modelling the DC link. The line chosen for incorporation of DC link is a weak bus. This project gives the results of load flow and along with comparison of reactive power flow, system losses, voltage in an AC and an AC-DC system.

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3308
Author(s):  
Xingpeng Li

Though the full AC power flow model can accurately represent the physical power system, the use of this model is limited in practice due to the computational complexity associated with its non-linear and non-convexity characteristics. For instance, the AC power flow model is not incorporated in the unit commitment model for practical power systems. Instead, an alternative linearized DC power flow model is widely used in today’s power system operational and planning tools. However, DC power flow model will be useless when reactive power and voltage magnitude are of concern. Therefore, a linearized AC (LAC) power flow model is needed to address this issue. This paper first introduces a traditional LAC model and then proposes an enhanced data-driven linearized AC (DLAC) model using the regression analysis technique. Numerical simulations conducted on the Tennessee Valley Authority (TVA) system demonstrate the performance and effectiveness of the proposed DLAC model.


Author(s):  
Fadhel Putra Winarta ◽  
Yoli Andi Rozzi

The study of electric power flow analysis (Load Flow) is intended to obtain information about the flow of power or voltage in an electric power system network. This information is needed to evaluate the performance of the power system. Electrical power flow problems include calculating the flow and system voltage at certain terminals or buses. The benefits of this power flow study are to find out the voltage at each node in the system, to find out whether all the equipment meets the specified limits to deliver the desired power, and to obtain the original conditions in the new system planning. This study is divided into two: the analysis of data when the conditions have not been added wind turbine and after the addition of 300 kW wind turbine with software power station ETAP software 12.6.0 and the Newton-Raphson method will be used in analyzing the power flow of the electric power system. Based on the results of the tests, it is found that the overall value of losses for power flow before the addition of DG is 0.031 MW and 0.037 Mvar, for the voltage drop with the lowest percentage, namely on bus 10 with a percentage of 96.45 for the 0.4 kV system and the 20 kV system on bus 19 with a percentage of 99.03, the largest% PF load was in lump 1 with 98.64 and the smallest% PF was in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University before the addition of DG with 3-phase disturbances averaged 13.354 A, 1-phase disturbances averaged 3.521 A, 2-phase disturbances averaged 11.719 A and 2 ground phases of 12.842 A Whereas for the value of power flow after the addition of DG in the form of the wind turbine of 300 kW the overall value of losses is 0.032 MW and 0.042 MvarAR, for the voltage drop with the percentage for voltage drop with the lowest percentage is bus 10 with a percentage of 96.63 for system 0, 4 kV and a 20 kV system on bus 14 with a percentage of 98.1, the largest% PF load is in lump 1 with 98.64 and the smallest% PF is in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University after the addition of DG with 3 phase disturbances has an average value of 13.354 A, 1 phase disturbance averages 3.523 A, 2 phase disturbances average 11.737 A and 2 phases ground is 12.059 A For the source in this system, after the addition of DG, there was a change in the% PF of the PLN grid, namely 79.53 and the wind turbine -83%.


Author(s):  
Girisha H Navada ◽  
K. N. Shubhanga

Abstract A method is proposed to modify the conventional load flow programme to accommodate large-scale Solar PhotoVoltaics (SPV) power plant with series power specifications. The programme facilitates easy handling of any number of SPV systems with standard control strategies such as pf-control and voltage-control, considering solar inverter’s power constraints. In this method, the non-linear equations related to SPV systems, located at multiple locations, are solved with the main load flow equations in an integrated fashion, considerably reducing the implementation task. This task is achieved by augmenting the inverter buses to the existing power system network in such a way that the changes required in the conventional programme are minimal. To show the effectiveness of the proposed method, it is compared with the alternate-iteration method popularly followed in the literature. The workability of the proposed method has been demonstrated by using a Single Machine Infinite Bus (SMIB) system and the IEEE14-bus power system with SPV systems. Various test cases pertaining to meteorological variables and control strategies are also presented.


2020 ◽  
Vol 8 (5) ◽  
pp. 5675-5684

Inadequate supply of power is increasing day by day and causing a lot of problems and affecting various sectors of the country. This work involves the power analysis on the 28-bus network of the Nigeria 330kV integrated power system. The network consists of twenty-eight (28) buses, nine (9) generation stations, and fifty-two (52) transmission lines. Newton-Raphson (N-R) method of power flow analysis was carried out on the network using the relevant data. This analysis was carried out using PSS®E to determine bus voltages, real and reactive power losses of the integrated network. The work also involves carrying out line outages on various parts of the network to determine the effects on power losses and bus voltages. The results show that the following buses were not in line with the statutory limit of 0.95≤Vi≤1.05: bus 13 (New-Heaven), bus 14 (Onitsha), bus 16 (Gombe), bus 19 (Jos), bus 22 (Kano). Bus 16 was observed to not satisfy the limit during the analysis going as low as 0.7602p.u. in one of the line outages (Makurdi-Mambila off). The total losses was also determined and the highest power loss was observed when Makurdi-Mambila line was taken out of service (142.54MW, 1072.16MVAR) and the lowest loss was observed when the double transmission line between Benin-Sapele were both taken out of service(105.0MW, 830.50MVAR). This result concludes that the Nigeria network still needs to undergo changes to ensure sustainable and reliable power system. Compensation is recommended on the above stated weak buses using Flexible Alternating Current Transmission System (FACTS).


Author(s):  
GUNEET KOUR ◽  
G.S. BRAR ◽  
JASWANTI JASWANTI

With increase in load, any transmission, distribution and generating model suffers from disturbances. These disturbances effect the overall stability of the system. Criterias like voltage profile, power flows, losses tell us about the state of the system under study. Load flow analysis of the system under study is capable of providing the insight of the system. The Emergence of FACTS device is really a step forward for the flexible control or Power System Operations. FACTS is the name given to the application of the power electronics devices to control power flows and other quantities in the power system. But when it comes to implementation stage, optimizing the location becomes a great concern because of the high cost involved with FACTS devices especially converter like SVC, STATCOM etc. Static Var Compensator (SVC) is a power quality device, which employs power electronics to control the reactive power flow of the system where it is connected. It is able to provide fast-acting reactive power compensation on electrical systems. SVC is one of the methods and can be applied to obtain a system with least losses, increased power flow and healthy voltage profile. Number, location and size of SVC are the main concerns and they can be optimized to a great extent by Genetic Algorithm (GA) or any other method. Use of SVC in a system has shown considerable increase in voltage profile and power flows while decrease in losses.


2011 ◽  
Vol 383-390 ◽  
pp. 2346-2349
Author(s):  
Jie Luo ◽  
Wen Hui Wu

Power flow analysis plays a significant role in both design and operational stage. The purpose of any load flow analysis is to compute accurate steady state voltages and voltage angles of all buses in a network, the real and reactive power flows into every line and transformer, under the assumption of known generation and load. This paper focus on fast decoupled flow, a practical power system has been used as an example to introduce its application in actual calculation, what’s more, develops a fast decoupled load flow calculation program for n-node system by taking advantage of MATLAB. A visual GUI interface is also established with MATLAB. In addition, the paper proposes a new simple power system data format, different from the IEEE standard one. The correctness and simplicity of the proposed format is verified through IEEE-5bus,-9bus,-11bus,-39bus systems.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Ali Abdulazeez ◽  
Bassam Mohammed ◽  
Bilal Nasir ◽  
Mohammed Yasen

Power System Stabilizer (PSS) is one of the most used controllers in the local generations, primarily it aimed to suppress local mode of oscillations. On the other hand, the Unified Power Flow Controllers (UPFC) the most versatile member of flexible alternating current transmission system devices to simultaneously control real and reactive power flows on transmission lines, as well as regulate selected bus voltage. Each of these controllers, on their own, can show satisfactory performance to enhance power system stability. However, when they utilized together, their dynamic performance can degrade due to controller interaction, that should be strategically optimized. In this paper, the coordinated design of pss's and upfc is realized to damp inter-area oscillations in  two-area power system using particle swarm optimization (PSO) method. The simulated cases in Matlab environment show that the interaction of pss's and upfc can be optimized, so the inter-area oscillations can be effectively mitigated following after fault, the simulation results of the uncoordinated design are also presented.


2018 ◽  
Vol 7 (3) ◽  
pp. 1656 ◽  
Author(s):  
Nabil A. Hussein ◽  
Ayamn A. Eisa ◽  
Hassan M. Mahmoud ◽  
Safy A. Shehata ◽  
El-Saeed A. Othman

Flexible AC Transmission Systems (FACTS) have been proposed in the late 1980s to meet and provide the electrical power system requirements. FACTS are used to control the power flow and to improve the power system stability. Interline power flow controller (IPFC) is a versatile device in the FACTS family of controllers and one of its latest generations which has the ability to simultaneously control the power flow in two or multiple transmission lines. This paper is tackling the IPFC performance in power systems; it aims to discuss the availability to define a known scenario for the IPFC performance in different systems. An introduction supported with brief review on IPFC, IPFC principle of operation and IPFC mathematical model are also introduced. IEEE 14-bus and 30-bus systems have chosen as a test power systems to support the behavior study of power system equipped with IPFC device. Three different locations have chosen to give variety of system configurations to give effective performance analysis.  


Author(s):  
Chi Tang ◽  
Adam Freeman ◽  
Jerome Spence ◽  
Matthew Bradica ◽  
Donge Ren

This paper summarizes the experience in using Siemens PSSE-University power system simulation software as a teaching aid to introduce basic power system concepts to engineering technology students at the undergraduate level. Topics to be discussed and demonstrated in this paper include AC and DC power flow analysis, power system transient stability analysis, reactive power and voltage control, as well as short circuit analysis. For each of the topics presented above, the paper will provide (i) the theoretical background, (ii) a numerical example solvable by hand-calculations, and (iii) the corresponding solution obtained from running PSSE- University. The paper will also provide the perspectives of the instructor on using PSSE as a teaching tool and the perspectives of the students on using PSSE as a learning tool.


2021 ◽  
Vol 926 (1) ◽  
pp. 012028
Author(s):  
M Darwis ◽  
I C Gunadin ◽  
S M Said

Abstract Load Flow or Power Flow Analysis in the power system in used to determine the power system parameters such as voltage, current, active power, and reactive power contained in the power grid. The method that has long been used in the calculation of load flow or power flow is the Newton-Raphson iteration method. As for its development, to complete the power flow study, it is carried out by implementing the Artificial Intelligence method, one of which is the Extreme Learning Machine method. This method is used in the simulation of the simple 39 Bus system calculation from IEEE. In this Extreme Learning Machine, the testing analysis is carried out with 2 inputs, 1 hidden layer, 5 neurons, and 2 outputs and the number of datasets is 39 to produce MAE and MAPE respectively 2.02 and 0.76% and with a very fast processing time of 0.010s


Sign in / Sign up

Export Citation Format

Share Document