scholarly journals Optimization of Biodiesel Synthesis using Heterogeneous Catalyst (SiO2) from Karanja Oil by Taguchi Method

Biodiesel is renewable and environmental friendly fuel which has the capable to gain comparable engine performance. In this experimental study, Karanja oil synthesized by using Transesterification process. Transesterification of Karanja oil to biodiesel using SiO2 as a heterogeneous catalyst is studied using five different parameters and levels each. Minitab is used to fix the orthogonal arrays and Taguchi method is used to analyze the interaction effect for the transesterification reaction. The five different parameters responsible for biodiesel yield are molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction time and stirring speed. Effect of these parameters has studied on small scale. The biodiesel yield obtained experimentally at optimum conditions are 20% methanol to oil molar ratio, 3% SiO2 catalyst addition, 65ºC reaction temperature, 180 min reaction time and 500 rpm stirring speed is 77%.

2019 ◽  
Vol 8 (4) ◽  
pp. 5555-5558

Biodiesel is renewable and environmental friendly fuel which has the potential to obtain considerable performance of engine. The aim of this work is to optimize the transesterification process for production of biodiesel using Taguchi method. In this experimental work, the Karanja oil transesterification is done to produce biodiesel using Al2O3 as a heterogeneous catalyst, using five parameters and five levels. Orthogonal array obtained by Minitab to analyze the interaction effect by using Taguchi method for the transesterification reaction. The parameters such as molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction time and stirring speed are effect on biodiesel yield. Effect of these parameters is investigated on small scale. Experimental yield obtained at optimal conditions i.e. are 20:1 molar ratio of methanol to oil, addition of 3% Al2O3 catalyst, reaction temperature 65ºC, reaction time 60 min and 600 rpm stirring speed is 80%.


2013 ◽  
Vol 389 ◽  
pp. 12-16
Author(s):  
Yong Feng Kang ◽  
Hua Jin Shi ◽  
Lin Ge Yang ◽  
Jun Xia Kang ◽  
Zi Qi Zhao

Biodiesel is prepared from waste cooking oil and methanol. The ester exchange reaction is conducted under ultrasonic conditions with alkali as the catalysts. Five factors influencing on the transesterification reaction of biodiesel production are discussed in this study, including the reaction time, reaction temperature, catalyst amount, methanol to oil molar ratio, ultrasonic power. A series of laboratory experiments were carried out to test the conversion of biodiesel under various conditions. The process of biodiesel production was optimized by application of orthogonal test obtain the optimum conditions for biodiesel synthesis. The results showed that the optimum reaction conditions were:molar ratio of oil to methanol 8:1,catalysts 1.2g KOH/100g oil,reaction temperature 70°C, reaction time 50 min,Ultrasonic power 400W. The conversion may up to 96.48%.


2011 ◽  
Vol 17 (2) ◽  
pp. 117-124 ◽  
Author(s):  
B. Singh ◽  
Faizal Bux ◽  
Y.C. Sharma

Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalyst respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 wt% of catalyst amount, 55?0.5?C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 wt% of catalyst amount, at 65?0.5?C. A high yield (95-97%) and conversion (>96.5%) was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.


2012 ◽  
Vol 622-623 ◽  
pp. 1204-1208
Author(s):  
Amar P. Pandhare ◽  
Atul S. Padalkar

The awareness on biodiesel in developing countries in the recent times has been increased. Several activities have been picked up for its production especially with a view to boost the rural economy. In the present investigation biodiesel was prepared from jatropha curcas seed oil (non edible oil). Before exploiting any plant for industrial application, it is imperative to have complete information about its biology, chemistry, and all other applications so that the potential of plant could be utilized maximally. Biodiesel was prepared by transesterification process of jatropha oil with methanol in heterogeneous system, using heterogeneous catalyst. The heterogeneous catalysts are environment friendly and render the process simplified. Calcination process was followed by the dependence of the conversion of jatropha oil on the reaction variables such as the catalyst loading; the molar ratio of the methanol to oil, reaction temperature agitation speed and the reaction time was studied. The conversion was over 89% at a reaction temperature of 70oC and molar ratio 12:1. Finally, Jatropha oil methyl esters was characterized to test its properties as fuels in diesel engines, such as viscosity, flash point, cetane number. Results showed that biodiesel obtained under the optimum conditions is an excellent substitute for fossil fuels.


2014 ◽  
Vol 521 ◽  
pp. 621-625 ◽  
Author(s):  
Yi Gang Wang ◽  
Xiao An Nie ◽  
Zhen Xing Liu

The preparation of biodiesel from Styrax Tonkinensis catalyzed by solid acid S2O82-/ZrO2-TiO2-Fe3O4 at an autoclave was studied in this paper. The magnetic catalysts were characterized by XRD, which explained the high catalytic effect. At the same time, the recovery rate and usage count of catalysts were also studied. And the results showed that a high yield of transesterification can be obtained in a closed autoclave at the condition of catalyst amount 5 %, reaction time 1.5 h, reaction temperature 373K and methanol and oil molar ratio 10:1. The results also showed that the catalysts were still with a higher catalytic efficiency when the catalysts were calcinated after the forth usage.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 499-503 ◽  
Author(s):  
Shifa Wang

Abstract A light-colored rosin glycerol ester was synthesized from gum rosin and glycerol in the presence of a highly effective decolorizing agent. The effects of the type and dosage of the decolorizing agent and the reaction temperature and time on the yield, softening point, color, and acid number of the rosin glycerol ester were investigated. Experimental results showed that 4,4′-thio-bis(6-tert-butyl-3-methyl phenol) was the best decolorizing agent. It promoted esterification at an optimal dosage of 0.5% (based on the weight percentage of starting material rosin). Suitable conditions for esterification of rosin and glycerol were: reaction temperature, 260–270°C; reaction time, 6–8 h; and rosin/glycerol molar ratio, 2.5:1 (mol mol-1). The characteristics of the rosin glycerol ester obtained under these conditions were as follows: softening point, 90–94°C (ball and ring method); color, 1–2 (Gardner value); acid number, 7–8; and yield, >88% (based on the total weight of rosin and glycerol). The selected additive has a multifunctional effect involving bleaching, disproportionation, and catalysis.


Author(s):  
Naveen Kumar Garg ◽  
Amit Pal

A novel and rapid method for transesterifying cottonseed oil into bio-diesel using a domestic microwave oven (MW) has been developed in the present study. Five parameters were investigated to see their effect on bio-diesel yield output. These were input power, reaction time, oil-to-methanol molar ratio, turntable speed, and fan cooling speed. The respective values used for experimentation were 200 W to 500 W, 4 to 11 minutes, 1:4.5 to 1:12, 10 to 40 rpm, and 800 to 1500 rpm and the volume of the catalyst was kept constant at 1%. The experimental results of microwave study were compared to the traditional magnetic stirrer (MS) approach for the same molar ratio and catalyst amount. The optimum parameters for the transesterification process assisted by the domestic microwave oven were obtained such as methanol to oil molar ratio (1:4.5), potassium hydroxide catalyst concentration (1% (w/w)), reaction time (11 minutes), turntable speed (40 rpm) and cooling fan speed (1500 rpm). The corresponding yield of cottonseed bio-diesel (CBD (MW)) was 99.5 percent. Compared with the contemporary MS approach for the same molar ratio and catalyst number, the yield of CBD (MS) was recorded in 25 minutes as 61.23 percent. It was also found that the turntable speed and cooling fan rpm of the improved microwave oven greatly, influenced the yield of bio-diesel and facilitated better utilization of microwave energy in mixing and avoid overheating of the sample mixture. A drastic reduction in microwave input power consumption was observed as compared to the pragmatic MS approach. The findings of this study have established the utility of energy-efficient, updated domestic microwave oven in the generation of bio-diesel on a small scale.


Sign in / Sign up

Export Citation Format

Share Document