scholarly journals Closed Loop Control of Multilevel Dc-Dc Boost Converter

This paper presents a multilevel DC-DC boost converter (MBC). It is derived from a conventional boost converter just by adding (2N-1) number of capacitors and same number of diodes in order to obtain N levels of output voltage. Its key feature is to convert low input DC to a high output DC at various levels. This feature makes it a suitable candidate for renewable applications like photovoltaic (PV) system, fuel cell system etc. This paper presents a mathematical model of a N level boost converter. Effect of series resistance (ESR) in inductor is analyzed. A closed loop system for a three level MBC is developed and corresponding simulation results are presented.

Author(s):  
Pradeep Shankar and Dr.S.Chitra

The utilization of DC power obtained from Photovoltaic panels are more reliable and economical. The usage of PV fed Motor drives increases the demand in domestic, agricultural and industrial appliances. The objective of the proposed method is to control the speed of the 6/4 pole SRM motor in a closed-loop system using PI controller by employing the zeta converter. The velocity versus the position of the translator is being controlled with the PI controller. The control system maintains the desired speed in variations of the load or the motor parameters, by selecting predetermined switching angles. The performance of the SRM motor has been analyzed through MATLAB/Simulink platform and results show the effectiveness of the proposed system.


2014 ◽  
Vol 573 ◽  
pp. 78-82
Author(s):  
Gopal Janaki ◽  
A. Senthil Kumar

This paper explores the level of conducted EMI in a buck boost converter under a non linear load condition based on the CISPR 11 / Class A EMC standard. Here, the buck boost converter was designed to produce a constant output voltage irrespective of load conditions. The closed loop control is designed using dsPIC controller. Three different randomization firing schemes are adopted and the EMI analysis in each mode is done experimentally. Also, the results are compared with normal PWM scheme. The experimental result shows that in RPWM scheme the emission levels are comparatively low.


2021 ◽  
Vol 850 (1) ◽  
pp. 012036
Author(s):  
R Latha ◽  
S Adharsh Babu ◽  
M Vivek Kumar

Abstract Electric vehicles are the future of mobility solutions. The electric vehicles are driven by an electric motor with the help of a power electronic interface. The power electronic interface needs to be designed in an efficient way both in mechanical and electrical aspects. This paper proposes the concept of design, simulation and analysis of a 10 kW Multi-Device Interleaved DC-DC Boost Converter (MDIBC) to drive a 4 kW Induction Motor. The motor is driven from the MDIBC through an inverter with SPWM technique. The variation in DC link voltage due to motor is controlled and stabilized to give a constant DC of 400 V. MDIBC consists of semi-controlled switches topology excited by Phase Shifted PWM technique to reduce the ripple current in interleaving inductors. The dual loop control methodology using PI controller is adopted to reduce the ripple in input inductor current and DC link voltage. The open loop simulation and closed loop simulation are done in MATLAB Simulink environment. The simulation results show that the overshoots and steady state error in inductor currents and output voltage are reduced in addition with reduction in current and voltage ripples.


Author(s):  
R Whalley ◽  
M Ebrahimi

The regulation of linearized multivariable system models, following input set point and load disturbance changes, is considered. An inner and outer closed-loop control strategy is outlined, enabling targeted recovery rates, offset attenuation and low steady state interaction to be achieved. Proportional control and passive network compensation alone are employed. Gain ratio selection and outer loop tuning are exercised, ensuring thereby the confinement of output perturbations to low-frequency load disturbances and reference input changes. Application studies are presented for purposes of comparison.


Sign in / Sign up

Export Citation Format

Share Document