scholarly journals Pasta based on Sweet Potato: Optimization of Fiber Content in Response Surface Methodolgy

Sweet potato as a high fibre supplement that can be used in the production of pasta. The production of sweet potato pasta was optimized by Response Surface Methodology. The parameters used for optimizing the products are solid loss, texture, fibre content. Box - behnken design was used to develop models for the response. For the production of sweet potato based pasta 174.285 g of sweet potato, 48.4735 g of water, 28.8296 g of soy flour, 2.69575 g of Arabic gum and 0.877038 g of cmc (carboxyl methyl cellulose). The responses were mostly deviated by changes in quantity of soy flour and Arabic gum and to a small extent the deviation by sweet potato and water levels. The result of this study showed a minimum solid loss of 13.45% and maximum texture hardness of 6994 g and maximum fibre content of 8.52 g

2021 ◽  
Vol 41 (4) ◽  
pp. 395
Author(s):  
Yanti Nopiani ◽  
Agnes Murdiati ◽  
Widiastuti Setyaningsih

Kulit koro pedang putih dapat digunakan sebagai sumber selulosa. Salah satu alternatif untuk meningkatkan aplikasi selulosa adalah dengan memodifikasi selulosa menjadi produk turunan selulosa yaitu Hydroxypropyl Methyl Cellulose (HPMC). Tujuan dari penelitian ini adalah melakukan optimasi terhadap sintesis dan karkaterisasi HPMC dari selulosa kulit koro pedang putih. Proses optimasi didahului dengan kajian literatur untuk menentukan kisaran titik percobaan dengan variabel terikat berupa molar subtitusi (MS) dan Derajat Subtitusi (DS). Diperoleh titik percobaan dengan variasi konsentrasi NaOH (5, 22,5, dan 40%), variasi Dimetil Sulfat (DMS) (40, 80, dan 120%), dan variasi Proilen Oksida (PO) (80, 120, dan 160%). Kemudian optimasi sintesis HPMC dilakukan dengan mengunakan Box-Behnken design (BBD) lalu dianalisis menggunakan Response Surface Methodology (RSM) Berikutnya HPMC dikarakterisasi meliputi molar subtitusi (MS), Derajat Subtitusi (DS), water holding capacity (WHC), oil holding capacity (OHC), lightness, rendemen, kristalinitas dan spektra FT-IR untuk mengetahui gugus fungsi HPMC. Hasil optimasi sintesis HPMC dari selulosa kulit koro pedang putih berdasakan RSM diperoleh titik optimum pada konsentrasi NaOH 23,11%, DMS 43,4% dan PO 81,8%. dengan karakterisasi kadar air 9,04% (wb); MS 0,15; DS 1,18; WHC 2,20 g/g; OHC 2,09 g/g; lightness 90,93; rendemen 114,78% dan kristalinitas 64%. Spektra FT-IR HPMC koro pedang putih terbaca pada bilangan gelombang 2924 cm-1 (CH dan CH2 Streching), 1373 cm-1 (CH3 Bonding), 1118 cm-1 (C-O-C), 1319 cm-1 (O-H Plane Bonding) dan 848, 68 cm-1 (C-O-C pada 1,4 β glikosidic linkage) yang merupakan ciri khas dari gugus fungsional HPMC.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2020 ◽  
Vol 15 (2) ◽  
pp. 152-165
Author(s):  
Harekrishna Roy ◽  
Sisir Nandi ◽  
Ungarala Pavani ◽  
Uppuluri Lakshmi ◽  
Tamma Saicharan Reddy ◽  
...  

Background: The present study deals with the formulation and optimization of piroxicam fast dissolving tablets and analyzes the impact of an independent variable while selecting the optimized formulation utilizing Quality by Design (QbD) and Box-Behnken Design (BBD). Methods: Seventeen formulations were prepared by direct compression technique by altering the proportion of cross carmellose sodium, spray dried lactose and hydro propyl methyl cellulose (HPMC K4M). The BBD statistical technique was used to optimize formulations and correlate the relationship among all the variables. Also, the powder mixture characteristics and tablet physiochemical properties such as hardness, friability, drug content, Disintegration Time (DT) and dissolution test were determined using 900 ml of 0.1N HCl (pH-1.2) at 37 ± 0.5°C. Results: Significant quadratic model and second order polynomial equations were established using BBD. To find out the relationship between variables and responses, 3D response surface and 2D contour plot was plotted. A perturbation graph was also plotted to identify the deviation of the variables from the mean point. An optimized formula was prepared based on the predicted response and the resulting responses were observed to be close with the predicted value. Conclusion: The optimized formulation with the desired parameter and formulation with variables and responses can be obtained by BBD and could be used in the large experiment with the involvement of a large number of variables and responses.


2017 ◽  
Vol 9 ◽  
pp. 39-45 ◽  
Author(s):  
Mehran Nouri ◽  
Behzad Nasehi ◽  
Vahid Samavati ◽  
Saman Abdanan Mehdizadeh

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Praveen Kumar Siddalingappa Virupakshappa ◽  
Manjunatha Bukkambudhi Krishnaswamy ◽  
Gaurav Mishra ◽  
Mohammed Ameenuddin Mehkri

The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and   % removal of crude oil.


Sign in / Sign up

Export Citation Format

Share Document