scholarly journals Experimental Study of Pool Effect of Shear, Flexure and Torsion on SFRC Beams

Flexural, torsional, compressive and shear behavior of Steel Fiber Reinforced Concrete (SFRC) is already studied individually but none has studied the performance of SFRC beams under a combined effect of more than one state i.e. tension, flexure, torsion, compression and shear in general by now. In this study M20 grade of concrete beams under composite behavior of flexure, shear and torsion with different compositions of fibers mix were investigated. The dimensions of specimen beams was 100 mm x 100 mm x 500 mm and straight cylindrical fibers of length 0.28 mm and aspect ratio 100 were mixed. A total of 48 specimen were casted and tested such that for every percentage of fiber and each torsion value three beams were tested. Hence there are four torsion values 0, 61.75, 119.41 and 176.53 N-m are applied (4x3x4=48) It was found during study that ultimate bending stress and deflection increases due to increase in torsion where as the ductility reduced with the torsion enhancement for a specific fraction of fiber content.

Author(s):  
O. Radaikin ◽  
L. Sharafutdinov

The purpose of the study is to experimentally study the joint work of steel fiber reinforced concrete (SFB) reinforcement jacket and reinforced concrete beams at all stages of loading to further develop a methodology for calculating this method of reinforcing bending elements. The main results of the study consist in assessing the strength, stiffness, fracture toughness, as well as the nature of fracture with a picture of the development of cracks for the examined 4 samples (two with a jacket of reinforcement, two - control - without reinforcement). It has been established that the use of SFB jacket with a thickness of 45 mm and with a fiber content percentage of 2,5% (at a flow rate of 196 kg/m3) increases the breaking load by 20 %, stiffness from 3,4 to 11 times as it is loaded, crack resistance 2,4-2,8 times. The results are compared with computer modeling in ANSYS PC: the discrepancy in the load of crack formation, fracture and deflection values for full-scale samples and a computer model are within 6,3 %, which indicates the reliability of the numerical results and the possibility of using the proposed computer models in further studies on topic of the article.


Author(s):  
Natalia Sharma

Abstract: Reinforced concrete structures are frequently in need of repair and strengthening as a result of numerous environmental causes, ageing, or material damage under intense stress conditions, as well as mistakes made during the construction process. RC structures are repaired using a variety of approaches nowadays. The usage of FRC is one of the retrofitting strategies. Steel fiber reinforced concrete (SFRC) was used in this investigation because it contains randomly dispersed short discrete steel fibers that operate as internal reinforcement to improve the cementitious composite's characteristics (concrete). The main rationale for integrating small discrete fibers into a cement matrix is to reduce the amount of cement used. The principal reason for incorporating short discrete fibers into a cement matrix is to reduce cracking in the elastic range, increase the tensile strength and deformation capacity and increase the toughness of the resultant composite. These properties of SFRC primarily depend upon length and volume of Steel fibers used in the concrete mixture. In India, the steel fiber reinforced concrete (SFRC) has seen limited applications in several structures due to the lack of awareness, design guidelines and construction specifications. Therefore, there is a need to develop information on the role of steel fibers in the concrete mixture. The experimental work reported in this study includes the mechanical properties of concrete at different volume fractions of steel fibers. These mechanical properties include compressive strength, split tensile strength and flexural strength and to study the effect of volume fraction and aspect ratio of steel fibers on these mechanical properties. However, main aim of the study was significance of reinforced concrete beams strengthened with fiber reinforced concrete layer and to investigate how these beams deflect under strain. The objective of the investigation was finding that applying FRC to strengthen beams enhanced structural performance in terms of ultimate load carrying capacity, fracture pattern deflection, and mode of failure or not.


Sign in / Sign up

Export Citation Format

Share Document