scholarly journals Diseased Portion Cassification & Recognition of Cotton Plants using Convolution Neural Networks

Cotton plant is one of the cash crops in India. For more profit its intense care is necessary. Many researchers are using machine learning for early detections of cotton plant disease. Convolution neural network (CNN) is a deep feed forward artificial neural network. This algorithm is little faster as compared to other classification algorithms. In this paper, CNN is used for classification of the diseased portion of cotton plant images. The result shows that the model used classifies the healthy and diseased cotton leaves more accurately

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6491
Author(s):  
Le Zhang ◽  
Jeyan Thiyagalingam ◽  
Anke Xue ◽  
Shuwen Xu

Classification of clutter, especially in the context of shore based radars, plays a crucial role in several applications. However, the task of distinguishing and classifying the sea clutter from land clutter has been historically performed using clutter models and/or coastal maps. In this paper, we propose two machine learning, particularly neural network, based approaches for sea-land clutter separation, namely the regularized randomized neural network (RRNN) and the kernel ridge regression neural network (KRR). We use a number of features, such as energy variation, discrete signal amplitude change frequency, autocorrelation performance, and other statistical characteristics of the respective clutter distributions, to improve the performance of the classification. Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter data for land and real clutter data from sea, offers improved classification accuracy. More specifically, the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional support vector machine and extreme learning based solutions.


Author(s):  
Kazuma Matsumoto ◽  
Takato Tatsumi ◽  
Hiroyuki Sato ◽  
Tim Kovacs ◽  
Keiki Takadama ◽  
...  

The correctness rate of classification of neural networks is improved by deep learning, which is machine learning of neural networks, and its accuracy is higher than the human brain in some fields. This paper proposes the hybrid system of the neural network and the Learning Classifier System (LCS). LCS is evolutionary rule-based machine learning using reinforcement learning. To increase the correctness rate of classification, we combine the neural network and the LCS. This paper conducted benchmark experiments to verify the proposed system. The experiment revealed that: 1) the correctness rate of classification of the proposed system is higher than the conventional LCS (XCSR) and normal neural network; and 2) the covering mechanism of XCSR raises the correctness rate of proposed system.


2021 ◽  
pp. 1143-1146
Author(s):  
A.V. Lysenko ◽  
◽  
◽  
M.S. Oznobikhin ◽  
E.A. Kireev ◽  
...  

Abstract. This study discusses the problem of phytoplankton classification using computer vision methods and convolutional neural networks. We created a system for automatic object recognition consisting of two parts: analysis and primary processing of phytoplankton images and development of the neural network based on the obtained information about the images. We developed software that can detect particular objects in images from a light microscope. We trained a convolutional neural network in transfer learning and determined optimal parameters of this neural network and the optimal size of using dataset. To increase accuracy for these groups of classes, we created three neural networks with the same structure. The obtained accuracy in the classification of Baikal phytoplankton by these neural networks was up to 80%.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2021 ◽  
pp. 190-200
Author(s):  
Lesia Mochurad ◽  
Yaroslav Hladun

The paper considers the method for analysis of a psychophysical state of a person on psychomotor indicators – finger tapping test. The app for mobile phone that generalizes the classic tapping test is developed for experiments. Developed tool allows collecting samples and analyzing them like individual experiments and like dataset as a whole. The data based on statistical methods and optimization of hyperparameters is investigated for anomalies, and an algorithm for reducing their number is developed. The machine learning model is used to predict different features of the dataset. These experiments demonstrate the data structure obtained using finger tapping test. As a result, we gained knowledge of how to conduct experiments for better generalization of the model in future. A method for removing anomalies is developed and it can be used in further research to increase an accuracy of the model. Developed model is a multilayer recurrent neural network that works well with the classification of time series. Error of model learning on a synthetic dataset is 1.5% and on a real data from similar distribution is 5%.


2021 ◽  
Author(s):  
Luke Gundry ◽  
Gareth Kennedy ◽  
Alan Bond ◽  
Jie Zhang

The use of Deep Neural Networks (DNNs) for the classification of electrochemical mechanisms based on training with simulations of the initial cycle of potential have been reported. In this paper,...


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Author(s):  
Valerii Dmitrienko ◽  
Sergey Leonov ◽  
Mykola Mezentsev

The idea of ​​Belknap's four-valued logic is that modern computers should function normally not only with the true values ​​of the input information, but also under the conditions of inconsistency and incompleteness of true failures. Belknap's logic introduces four true values: T (true - true), F (false - false), N (none - nobody, nothing, none), B (both - the two, not only the one but also the other).  For ease of work with these true values, the following designations are introduced: (1, 0, n, b). Belknap's logic can be used to obtain estimates of proximity measures for discrete objects, for which the functions Jaccard and Needhem, Russel and Rao, Sokal and Michener, Hamming, etc. are used. In this case, it becomes possible to assess the proximity, recognition and classification of objects in conditions of uncertainty when the true values ​​are taken from the set (1, 0, n, b). Based on the architecture of the Hamming neural network, neural networks have been developed that allow calculating the distances between objects described using true values ​​(1, 0, n, b). Keywords: four-valued Belknap logic, Belknap computer, proximity assessment, recognition and classification, proximity function, neural network.


2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.


Sign in / Sign up

Export Citation Format

Share Document