scholarly journals A Robust and Dynamic Fire Detection Algorithm using Convolutional Neural Network

Author(s):  
Sivasankar K. ◽  
Shubham Singh ◽  
Kanhaiya Kumar ◽  
Aman Dubey

The major part of the underlying idea is going to detect the fire from upcoming smoke and the shade color of the smoke using convolutional neural network. The fire detection followed by the smoke detection is going to depend on the shade and the direction vector analysis in this paper. Image processing from the available set of data is very vague ideation so in order to strengthen the idea we are incorporating two main features that is the smoke shade and direction vector. For this major process we will involve data preprocessing through bi-variate hypothesis to select two variables as the color of smoke and the direction of the smoke and hence do the further analysis on other features that how are they going to help in the upcoming detection neurons for the robust algorithm of fire detection

Author(s):  
Mrs. K. Sivasankari ◽  
◽  
Shubham Singh ◽  
Kanhaiya Kumar ◽  
Aman Dubey ◽  
...  

The major part of the underlying idea is going to detect the fire from upcoming smoke and the shade color of the smoke using convolutional neural network. The fire detection followed by the smoke detection is going to depend on the shade and the direction vector analysis in this paper. Image processing from the available set of data is very vague ideation so in order to strengthen the idea we are incorporating two main features that is the smoke shade and direction vector. For this major process we will involve data preprocessing through bi-variate hypothesis to select two variables as the color of smoke and the direction of the smoke and hence do the further analysis on other features that how are they going to help in the upcoming detection neurons for the robust algorithm of fire detection.


2021 ◽  
Author(s):  
Yanying Cheng ◽  
Ke Chen ◽  
Hui Bai ◽  
Chunjie Mou ◽  
Yuchun Zhang ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Jinkyu Ryu ◽  
Dongkurl Kwak

Recently, cases of large-scale fires, such as those at Jecheon Sports Center in 2017 and Miryang Sejong Hospital in 2018, have been increasing. We require more advanced techniques than the existing approaches to better detect fires and avoid these situations. In this study, a procedure for the detection of fire in a region of interest in an image is presented using image pre-processing and the application of a convolutional neural network based on deep-learning. Data training based on the haze dataset is included in the process so that the generation of indoor haze smoke, which is difficult to recognize using conventional methods, is also detected along with flames and smoke. The results indicated that fires in images can be identified with an accuracy of 92.3% and a precision of 93.5%.


Author(s):  
Alessio Gagliardi ◽  
Francesco de Gioia ◽  
Sergio Saponara

AbstractSmoke detection represents a critical task for avoiding large scale fire disaster in industrial environment and cities. Including intelligent video-based techniques in existing camera infrastructure enables faster response time if compared to traditional analog smoke detectors. In this work presents a hybrid approach to assess the rapid and precise identification of smoke in a video sequence. The algorithm combines a traditional feature detector based on Kalman filtering and motion detection, and a lightweight shallow convolutional neural network. This technique allows the automatic selection of specific regions of interest within the image by the generation of bounding boxes for gray colored moving objects. In the final step the convolutional neural network verifies the actual presence of smoke in the proposed regions of interest. The algorithm provides also an alarm generator that can trigger an alarm signal if the smoke is persistent in a time window of 3 s. The proposed technique has been compared to the state of the art methods available in literature by using several videos of public and non-public dataset showing an improvement in the metrics. Finally, we developed a portable solution for embedded systems and evaluated its performance for the Raspberry Pi 3 and the Nvidia Jetson Nano.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document