scholarly journals A real-time video smoke detection algorithm based on Kalman filter and CNN

Author(s):  
Alessio Gagliardi ◽  
Francesco de Gioia ◽  
Sergio Saponara

AbstractSmoke detection represents a critical task for avoiding large scale fire disaster in industrial environment and cities. Including intelligent video-based techniques in existing camera infrastructure enables faster response time if compared to traditional analog smoke detectors. In this work presents a hybrid approach to assess the rapid and precise identification of smoke in a video sequence. The algorithm combines a traditional feature detector based on Kalman filtering and motion detection, and a lightweight shallow convolutional neural network. This technique allows the automatic selection of specific regions of interest within the image by the generation of bounding boxes for gray colored moving objects. In the final step the convolutional neural network verifies the actual presence of smoke in the proposed regions of interest. The algorithm provides also an alarm generator that can trigger an alarm signal if the smoke is persistent in a time window of 3 s. The proposed technique has been compared to the state of the art methods available in literature by using several videos of public and non-public dataset showing an improvement in the metrics. Finally, we developed a portable solution for embedded systems and evaluated its performance for the Raspberry Pi 3 and the Nvidia Jetson Nano.

2020 ◽  
Vol 20 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Jinkyu Ryu ◽  
Dongkurl Kwak

Recently, cases of large-scale fires, such as those at Jecheon Sports Center in 2017 and Miryang Sejong Hospital in 2018, have been increasing. We require more advanced techniques than the existing approaches to better detect fires and avoid these situations. In this study, a procedure for the detection of fire in a region of interest in an image is presented using image pre-processing and the application of a convolutional neural network based on deep-learning. Data training based on the haze dataset is included in the process so that the generation of indoor haze smoke, which is difficult to recognize using conventional methods, is also detected along with flames and smoke. The results indicated that fires in images can be identified with an accuracy of 92.3% and a precision of 93.5%.


Author(s):  
Mrs. K. Sivasankari ◽  
◽  
Shubham Singh ◽  
Kanhaiya Kumar ◽  
Aman Dubey ◽  
...  

The major part of the underlying idea is going to detect the fire from upcoming smoke and the shade color of the smoke using convolutional neural network. The fire detection followed by the smoke detection is going to depend on the shade and the direction vector analysis in this paper. Image processing from the available set of data is very vague ideation so in order to strengthen the idea we are incorporating two main features that is the smoke shade and direction vector. For this major process we will involve data preprocessing through bi-variate hypothesis to select two variables as the color of smoke and the direction of the smoke and hence do the further analysis on other features that how are they going to help in the upcoming detection neurons for the robust algorithm of fire detection.


Author(s):  
Abhay Patil

Abstract: Animal intervention is significant intimidation to the potency of the crops, which influences food security and decreases the value to the farmers. This suggested model displays the growth of the Internet of Things and Machine learning technique-based resolutions to surmount this obstacle. Raspberry Pi commands the machine algorithm, which is interfaced with the ESP8266 Wireless Fidelity module, Pi-Camera, Speaker/Buzzer, and LED. Machine learning algorithms similar to Regionbased Convolutional Neural Network and Single Shot Detection technology represents an essential function to identify the target in the pictures and classify the creatures. The experimentation exhibits that the Single Shot Detection algorithm exceeds than Region-based Convolutional Neural Network algorithm. Ultimately, the Twilio API interfaced software decimates the data to the farmers to take conclusive work in their farm territory. Keywords: Region-Based Convolutional Neural Network (R-CNN), Tensor Flow, Raspberry Pi, Internet of Things (IoT), Single Shot Detector (SSD)


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1790
Author(s):  
Junsheng Yu ◽  
Xiangqing Wang ◽  
Xiaodong Chen ◽  
Jinglin Guo

Premature ventricular contraction (PVC) is a common cardiac arrhythmia that can occur in ordinary healthy people and various heart disease patients. Clinically, cardiologists usually use a long-term electrocardiogram (ECG) as a medium to detect PVC. However, it is time-consuming and labor-intensive for cardiologists to analyze the long-term ECG accurately. To this end, this paper suggests a simple but effective approach to search for PVC from the long-term ECG. The recommended method first extracts each heartbeat from the long-term ECG by applying a fixed time window. Subsequently, the model based on the one-dimensional convolutional neural network (CNN) tags these heartbeats without any preprocessing, such as denoise. Unlike previous PVC detection methods that use hand-crafted features, the proposed plan rationally and automatically extracts features and identify PVC with supervised learning. The proposed PVC detection algorithm acquires 99.64% accuracy, 96.97% sensitivity, and 99.84% specificity for the MIT-BIH arrhythmia database. Besides, when the number of samples in the training set is 3.3 times that of the test set, the proposed method does not misjudge any heartbeat from the test set. The simulation results show that it is reliable to use one-dimensional CNN for PVC recognition. More importantly, the overall system does not rely on complex and cumbersome preprocessing.


Author(s):  
Sivasankar K. ◽  
Shubham Singh ◽  
Kanhaiya Kumar ◽  
Aman Dubey

The major part of the underlying idea is going to detect the fire from upcoming smoke and the shade color of the smoke using convolutional neural network. The fire detection followed by the smoke detection is going to depend on the shade and the direction vector analysis in this paper. Image processing from the available set of data is very vague ideation so in order to strengthen the idea we are incorporating two main features that is the smoke shade and direction vector. For this major process we will involve data preprocessing through bi-variate hypothesis to select two variables as the color of smoke and the direction of the smoke and hence do the further analysis on other features that how are they going to help in the upcoming detection neurons for the robust algorithm of fire detection


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changming Wu ◽  
Heshan Yu ◽  
Seokhyeong Lee ◽  
Ruoming Peng ◽  
Ichiro Takeuchi ◽  
...  

AbstractNeuromorphic photonics has recently emerged as a promising hardware accelerator, with significant potential speed and energy advantages over digital electronics for machine learning algorithms, such as neural networks of various types. Integrated photonic networks are particularly powerful in performing analog computing of matrix-vector multiplication (MVM) as they afford unparalleled speed and bandwidth density for data transmission. Incorporating nonvolatile phase-change materials in integrated photonic devices enables indispensable programming and in-memory computing capabilities for on-chip optical computing. Here, we demonstrate a multimode photonic computing core consisting of an array of programable mode converters based on on-waveguide metasurfaces made of phase-change materials. The programmable converters utilize the refractive index change of the phase-change material Ge2Sb2Te5 during phase transition to control the waveguide spatial modes with a very high precision of up to 64 levels in modal contrast. This contrast is used to represent the matrix elements, with 6-bit resolution and both positive and negative values, to perform MVM computation in neural network algorithms. We demonstrate a prototypical optical convolutional neural network that can perform image processing and recognition tasks with high accuracy. With a broad operation bandwidth and a compact device footprint, the demonstrated multimode photonic core is promising toward large-scale photonic neural networks with ultrahigh computation throughputs.


Sign in / Sign up

Export Citation Format

Share Document