scholarly journals Thermal Effects on Magneto Hydrodynamic Casson Liquid Stream Between Electrically Conducting Plates

This paper is intended for studying the thermal effects of transient magneto hydrodynamic Casson liquid stream with presence of heat transfer through inclined parallel plates. The examination reveals various vital parts of flow and heat transfer. The partial differential equation which governs the conditions of the motion of the moving body is changed to standard differential conditions. The flow emphasizes and heat transfer attributes for different inferences of the representing parameters viz. the parameters Casson, heat source, Hartmann and Prandtl's numbers are explored. It was revealed that heat source and magnetic field alters the flow prototype and increments the fluid temperature.

2020 ◽  
Vol 25 (2) ◽  
pp. 88-102
Author(s):  
T. Mehta ◽  
R. Mehta ◽  
A. Mehta

AbstractThe aim of the paper is to investigate an oscillatory fluid flow and heat transfer through a porous medium between parallel plates in the presence of an inclined magnetic field, radiative heat flux and heat source. It is assumed that electrical conductivity of the fluid is small and the electromagnetic force produced is very small. The governing coupled equations of motion and energy are solved analytically. Numerical results for the velocity and temperature profiles, local skin friction coefficient and local Nusselt number for various values of physical parameters are discussed numerically and presented graphically.


Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2019 ◽  
Vol 30 (5) ◽  
pp. 2563-2581 ◽  
Author(s):  
Seyedmohammad Mousavisani ◽  
Javad Khalesi ◽  
Hossein Golbaharan ◽  
Mohammad Sepehr ◽  
D.D. Ganji

Purpose The purpose of this paper is to find the approximate solutions of unsteady squeezing nanofluid flow and heat transfer between two parallel plates in the presence of variable heat source, viscous dissipation and inclined magnetic field using collocation method (CM). Design/methodology/approach The partial governing equations are reduced to nonlinear ordinary differential equations by using appropriate transformations and then are solved analytically by using the CM. Findings It is observed that the enhancing values of aligned angle of the magnetic causes a reduction in temperature distribution. It is also seen that the effect of nanoparticle volume fraction is significant on the temperature but negligible on the velocity profile. Originality/value To the best of the authors’ knowledge, no research has been carried out considering the combined effects of inclined Lorentz forces and variable heat source on squeezing flow and heat transfer of nanofluid between the infinite parallel plates.


2000 ◽  
Vol 78 (9) ◽  
pp. 875-882 ◽  
Author(s):  
H A Attia

The steady laminar flow of an incompressible viscous electrically conducting non-Newtonian fluid of second grade impinging normal to a plane wall with heat transfer is investigated. An externally applied uniform magnetic field is applied normal to the wall, which is maintained at a constant temperature. A numerical solution for the governing momentum and energy equations is obtained. The effect of the characteristics of the non-Newtonian fluid and the magnetic field on both the flow and heat transfer is outlined. PACS Nos.: 47.50 and 47.15


Sign in / Sign up

Export Citation Format

Share Document