scholarly journals Delay Approximation Model for Prime Speed Interconnects in Current Mode

There is enormous demand for high speed VLSI networks in present days. The coupling capacitance and interconnect delay play a major role in judging the behavior of on chip interconnects. There is an on chip inductance effect as we switch to low technology that leads to delay in interconnecting. In this paper we are attempting to apply second order transfer function designed with finite difference equation and transform Laplace at the ends of the source and load termination. Analysis shows that the current signaling mode in VLSI interconnects provide better time delay than the voltage mode

2013 ◽  
Vol 22 (08) ◽  
pp. 1350068
Author(s):  
XINSHENG WANG ◽  
YIZHE HU ◽  
LIANG HAN ◽  
JINGHU LI ◽  
CHENXU WANG ◽  
...  

Process and supply variations all have a large influence on current-mode signaling (CMS) circuits, limiting their application on the fields of high-speed low power communication over long on-chip interconnects. A variation-insensitive CMS scheme (CMS-Bias) was offered, employing a particular bias circuit to compensate the effects of variations, and was robust enough against inter-die and intra-die variations. In this paper, we studied in detail the principle of variation tolerance of the CMS circuit and proposed a more suitable bias circuit for it. The CMS-Bias with the proposed bias circuit (CMS-Proposed) can acquire the same variation tolerance but consume less energy, compared with CMS-Bias with the original bias circuit (CMS-Original). Both the CMS schemes were fabricated in 180 nm CMOS technology. Simulation and measured results indicate that the two CMS interconnect circuits have the similar signal propagation delay when driving signal over a 10 mm line, but the CMS-Proposed offers about 9% reduction in energy/bit and 7.2% reduction in energy-delay-product (EDP) over the CMS-Original. Simulation results show that the two CMS schemes only change about 5% in delay when suffering intra-die variations, and have the same robustness against inter-die variations. Both simulation and measurements all show that the proposed bias circuits, employing self-biasing structure, contribute to robustness against supply variations to some extent. Jitter analysis presents the two CMS schemes have the same noise performance.


2014 ◽  
Vol 29 (9) ◽  
pp. 4479-4484 ◽  
Author(s):  
Hongyi Wang ◽  
Xi Hu ◽  
Quanfeng Liu ◽  
Gangdong Zhao ◽  
Dongzhe Luo

2021 ◽  
pp. 791-807
Author(s):  
Apoorva Gupta ◽  
Vikas Maheshwari ◽  
Somashekhar Malipatil ◽  
Rajib Kar

2014 ◽  
Vol 23 (06) ◽  
pp. 1450082 ◽  
Author(s):  
M. KAVICHARAN ◽  
N. S. MURTHY ◽  
N. BHEEMA RAO

In this paper, closed-form models for the computation of finite ramp responses of current-mode resistance inductance capacitance (RLC) interconnects in VLSI circuits are presented. These models are based on extended Eudes model and Scaling and Squaring algorithm which allow numerical estimation of delay in lossy very large scale integration (VLSI) interconnects. The existing Eudes model for interconnect transfer function approximation is extended to higher-order and then Scaling and Squaring method is applied for further improving the accuracy of delay estimation. With the equivalent lossy interconnect transfer function, finite ramp responses are obtained and line delay is estimated for various line lengths, per unit inductances and load capacitances. The estimated 50% delay values are compared with HSPICE W-element model. The worst case errors observed in the estimated delay values are 14.3% for Eudes model and 2% for extended Eudes model while the proposed Scaling and Squaring based model with 1% error is in very good agreement with HSPICE for line lengths 0.1–0.5 cm. The estimated crosstalk induced delay values of proposed model maximum error percentage is nearly half of the extended Eudes model. For both single and three coupled interconnect lines, the proposed model is in good agreement with HSPICE.


Sign in / Sign up

Export Citation Format

Share Document