scholarly journals Modelling of High Frequency SIC MESFET for Optical Sensing Applications

The analysis and design of fabricated optical GaAs high frequency MESFET model was improved and also majority carrier concentration doping is improved in un flatted channel region. This result was proved with component of photo sensors. The diode voltage is produced at the metal semi conductor rectifying contact and its blocks current flow in one polarity of voltage. The Laplace’s equation is used to solve problematically under the absence of light in a place and interpretation state. This paper main intention is to develop the MESFET using the finite differences method and solve the under illumination. The simulation responses main improvement is bunch of charge particles in optical device, the channel charge particles are varied at various operating voltages and light and also the simulation result was plotted in X and Y direction respect of electric field. In here the simulated and plotted results was analyzed the optical component is purely affected with intensity of illumination.

Author(s):  
Dmitri Vinnikov ◽  
Tanel Jalakas ◽  
Indrek Roasto

Analysis and Design of 3.3 kV IGBT Based Three-Level DC/DC Converter with High-Frequency Isolation and Current Doubler RectifierThe paper presents the findings of a R&D project connected to the development of auxiliary power supply (APS) for the high-voltage DC-fed rolling stock applications. The aim was to design a new-generation power converter utilizing high-voltage IGBT modules, which can outpace the predecessors in terms of power density, i.e. to provide more power for smaller volumetric space. The topology proposed is 3.3 kV IGBT-based three-level neutral point clamped (NPC) half-bridge with high-frequency isolation transformer and current doubler rectifier that fulfils all the targets imposed by the designers. Despite an increased component count the proposed converter is very simple in design and operation. The paper provides an overview of the design with several recommendations and guidelines. Moreover, the simulation and experimental results are discussed and the performance evaluation of the proposed converter is presented.


2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1943
Author(s):  
Bader N. Alajmi ◽  
Mostafa I. Marei ◽  
Ibrahim Abdelsalam ◽  
Mohamed F. AlHajri

A high-frequency multi-port (HFMP) direct current (DC) to DC converter is presented. The proposed HFMP is utilized to interface a photovoltaic (PV) system. The presented HFMP is compact and can perform maximum power point tracking. It consists of a high-frequency transformer with many identical input windings and one output winding. Each input winding is connected to a PV module through an H-bridge inverter, and the maximum PV power is tracked using the perturb and observe (P&O) technique. The output winding is connected to a DC bus through a rectifier. The detailed analysis and operation of the proposed HFMP DC-DC converter are presented. Extensive numerical simulations are conducted, using power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) software, to evaluate the operation and dynamic behavior of the proposed PV interfacing scheme. In addition, an experimental setup is built to verify the performance of the HFMP DC-DC converter.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1419
Author(s):  
Toshio Sugaya ◽  
Yukio Kawano

Terahertz waves are located in the frequency band between radio waves and light, and they are being considered for various applications as a light source. Generally, the use of light requires focusing; however, when a terahertz wave is irradiated onto a small detector or a small measurement sample, its wavelength, which is much longer than that of visible light, causes problems. The diffraction limit may make it impossible to focus the terahertz light down to the desired range by using common lenses. The Bull’s Eye structure, which is a plasmonic structure, is a promising tool for focusing the terahertz light beyond the diffraction limit and into the sub-wavelength region. By utilizing the surface plasmon propagation, the electric field intensity and transmission coefficient can be enhanced. In this study, we improved the electric field intensity and light focusing in a small region by adapting the solid immersion method (SIM) from our previous study, which had a frequency-tunable nonconcentric Bull’s Eye structure. Through electromagnetic field analysis, the electric field intensity was confirmed to be approximately 20 times higher than that of the case without the SIM, and the transmission measurements confirmed that the transmission through an aperture had a gap of 1/20 that of the wavelength. This fabricated device can be used in imaging and sensing applications because of the close contact between the transmission aperture and the measurement sample.


Sign in / Sign up

Export Citation Format

Share Document