scholarly journals Closed Form Solution for Outage and Average Bit Error Rate of Asymmetric Relaying System

In this paper, closed form solution of outage and bit error rate (BER) is evaluated for the purpose of performance analysis of the amplify and forward relaying scheme under the asymmetric fading environment. In this dual hop system, we have used Rayleigh fading along source S to relay R and Mixture Gamma fading along relay R to destination D. First, we have derived closed form solution of outage and then we have used this derived expression for getting closed form solution of bit error rate (BER) for different kinds of modulation. Since Mixture Gamma fading channel represents many fading channels as its special case, so proposed closed form solution of outage and bit error rate may be used for analysis of outage and bit error rate under various fading scenarios. Specifically, in this paper, for analysis of outage and bit error rate (BER), we have taken Nakagami-m fading as a particular case of Mixture Gamma fading and analyzed the performance of proposed system after observing effect of fading severity factor and signal to noise ratio (SNR) on outage probability and bit error rate (BER)

1994 ◽  
Vol 08 (08n09) ◽  
pp. 505-508 ◽  
Author(s):  
XIAN-GENG ZHAO

It is demonstrated by using the technique of Lie algebra SU(2) that the problem of two-level systems described by arbitrary time-dependent Hamiltonians can be solved exactly. A closed-form solution of the evolution operator is presented, from which the results for any special case can be deduced.


2021 ◽  
Vol 107 ◽  
pp. 194-200
Author(s):  
Theman Ibrahim Jirnadu ◽  
Adeyemi Abel Ajibesin ◽  
Ahmed T. Ishaq

Although, most researchers focus on some of the key components of good digital wireless communications which are the Bit Error Rate (BER) versus Signal to Noise Ratio (SNR) of modulation schemes. Energy consumption optimization is necessary for enhancing the performance of a wireless communication system as it offers numerous advantages to the system and the users. Therefore, this research focuses on analyzing the efficiency in the performance of the various QAM Modulation Schemes (4QAM, 16QAM, 32QAM & 64QAM) as they travel over noise/fading channels with the quest to obtain an energy-efficient scheme which will enhance system performance in terms of system runtime and quality of service. The efficiency of any given process, operation, or device is rated per the energy it consumes in carrying out an activity per unit output. Hence, the objective of this research work is to study and analyze comparatively the efficiency of these modulation schemes and to conclude with the most efficient scheme over the various channels. The evaluation of the Bit Error Rate (BER) versus energy per bit to noise spectral density (EbNo) for each communication scenario was carried out in MATLAB.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jun-Yi Duan ◽  
Guo-Ping Jiang ◽  
Hua Yang

This paper proposes a single-input multiple-output (SIMO) architecture for correlation delay shift keying (CDSK) modulation technique, and the bit error rate (BER) formula is derived under the assumption of the proposed system over Rayleigh fading channels. The new system employs multiple antennas at the receiver end to form a SIMO structure so as to obtain a diversity gain. Theoretical analysis and simulations show that, at a higher signal-to-noise ratio (SNR), the proposed SIMO-CDSK architecture has an outstanding bit error rate (BER) performance in contrast to the conventional single-input single-output (SISO) CDSK and GCDSK communication system; for the given SNR, the diversity gain of the proposed system will be improved with the number of receiver antennas increasing; for different SNRs, the best performance of the proposed system can be obtained by selecting the reasonable spreading factor; because the performance of SIMO-CDSK system is independent of the time delay, the proposed system has better security than GCDSK system.


Geophysics ◽  
1982 ◽  
Vol 47 (9) ◽  
pp. 1335-1337
Author(s):  
E. A. Nosal

A special case of spontaneous potential (SP) logging, which has a closed‐form solution, will be expressed as a convolutional operation. Such a formal demonstration serves two purposes. First, it separates the individual contribution of the tool from that of the earth. Second, it places this logging device within the mathematical context of signal analysis. The special case for which a closed‐form solution is known is that where all resistivities are equal. Fourier analysis applied to this solution leads to a product of two functions, of which one is identified as the contribution of the earth and the other of the tool.


Vehicles ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Blagojevic ◽  
Djudurovic ◽  
Bajic

One of the most common approaches in modern engineering research, including vehicle dynamics, is to formulate an accurate, but typically complex, mathematical model of a system or phenomenon and then use a software package to solve it. Typically, the solution is obtained in the form of a large data set, which may be difficult to analyse and interpret. This paper represents a purely theoretical analysis of a special case of vehicle longitudinal motion. Starting from a simplified mathematical model, a set of transcendental equations was derived that represents the exact solution of the model (i.e., in a closed form). The equations are analysed and interpreted in terms of what is their physical meaning. Although the equations derived here have only limited application in studying real world problems, due to the simplicity of the mathematical model, they offer a deeper insight into the nature of vehicle longitudinal motion.


Sign in / Sign up

Export Citation Format

Share Document