scholarly journals Classification of Healthy and Rot Leaves of Apple using Gradient Boosting and Support Vector Classifier

Conventional Techniques Such As Convolutional Neural Network (Cnn), Deep Neural Network Have Shown Its Own Footprints In The Field Of Image Classification With Promising Results. In The Past Decades, Classification Of Images Has Been Done With Varying Features Like Shape, Texture Etc. In This Paper, A Novel Approach Is Used To Classify The Leaf Images And Determine The Health And The Diseased Leaf. The Image Is Preprocessed By Extracting The Shape Feature And Classified The Leaves Of Apple As Healthy And Diseased (Rot Leaves) Using Two Novel Effective Approaches Gradient Boosting And Support Vector Classifier. We Have Collected 1813 Images Of Apple Leaves As Dataset And Out Of These, 70% Of The Data Is Used To Train And Remaining 30% Is Used To Test The Data. Our Algorithm Has Outperformed Other Traditional Techniques With Good Scale Of Accuracy(Gradient Boosting-87%, Support Vector Classifier91%). Strong Comparison Of Both Gradient Boosting And Support Vector Is Made And There Is Dominant Show Off Of The Confusion Matrix. Classification Of Healthy And Diseased Leaf Well In Advance Gives Nice Warning To The Producer Thereby Decreasing The Rate Of Diseased.

2021 ◽  
Vol 3 (3) ◽  
pp. 63-72
Author(s):  
Wanjun Zhao ◽  

Background: We aimed to establish a novel diagnostic model for kidney diseases by combining artificial intelligence with complete mass spectrum information from urinary proteomics. Methods: We enrolled 134 patients (IgA nephropathy, membranous nephropathy, and diabetic kidney disease) and 68 healthy participants as controls, with a total of 610,102 mass spectra from their urinary proteomic profiles. The training data set (80%) was used to create a diagnostic model using XGBoost, random forest (RF), a support vector machine (SVM), and artificial neural networks (ANNs). The diagnostic accuracy was evaluated using a confusion matrix with a test dataset (20%). We also constructed receiver operating-characteristic, Lorenz, and gain curves to evaluate the diagnostic model. Results: Compared with the RF, SVM, and ANNs, the modified XGBoost model, called Kidney Disease Classifier (KDClassifier), showed the best performance. The accuracy of the XGBoost diagnostic model was 96.03%. The area under the curve of the extreme gradient boosting (XGBoost) model was 0.952 (95% confidence interval, 0.9307–0.9733). The Kolmogorov-Smirnov (KS) value of the Lorenz curve was 0.8514. The Lorenz and gain curves showed the strong robustness of the developed model. Conclusions: The KDClassifier achieved high accuracy and robustness and thus provides a potential tool for the classification of kidney diseases


2021 ◽  
Vol 21 (4) ◽  
pp. 1179-1194
Author(s):  
Hui Liu ◽  
Ya Hao ◽  
Wenhao Zhang ◽  
Hanyue Zhang ◽  
Fei Gao ◽  
...  

Abstract. With the global climate change and rapid urbanization, urban flood disasters spread and become increasingly serious in China. Urban rainstorms and waterlogging have become an urgent challenge that needs to be monitored in real time and further predicted for the improvement of urbanization construction. We trained a recurrent neural network (RNN) model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging. The RNN model has been thoroughly evaluated, and our experimental results showed that it achieved higher accuracy than traditional machine learning methods, such as the support vector machine (SVM) and gradient boosting decision tree (GBDT). Furthermore, we build a nationwide map of urban waterlogging based on recent 2-year microblogging data.


10.6036/10117 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 35-38
Author(s):  
EDUARDO PEREZ CARETA ◽  
RAFAEL GUZMÁN SEPÚLVEDA ◽  
JOSE MERCED LOZANO GARCIA ◽  
MIGUEL TORRES CISNEROS ◽  
RAFAEL GUZMAN CABRERA

The popularity of the use of computational tools such as artificial intelligence has been increasing in recent years, and its importance in medicine is a fact. This field has benefited greatly thanks to the incorporation of more effective and faster methodologies in the medical diagnosis and registration processes. In the present work, the classification of images related to three diseases: Tuberculosis, Glaucoma and Parkinson's is carried out. We used deep learning and the RESNET50 convolutional neural network to extract classification characteristics, and then perform the classification based on standard methods, such as support vector machines, Naïve Bayes, and Centroid-based classifier, which are incorporated into two scenarios (cross validation; training and test sets). The classifier's performance is evaluated quantitatively using three evaluation metrics. The results obtained support the feasibility of the proposed methodology and its potential to improve medical diagnosis.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


2021 ◽  
Vol 185 ◽  
pp. 223-230
Author(s):  
Iren Valova ◽  
Chris Harris ◽  
Natacha Gueorguieva ◽  
Tony Mai

2021 ◽  
pp. 102568
Author(s):  
Mesut Ersin Sonmez ◽  
Numan Eczacıoglu ◽  
Numan Emre Gumuş ◽  
Muhammet Fatih Aslan ◽  
Kadir Sabanci ◽  
...  

Author(s):  
Sumit S. Lad ◽  
◽  
Amol C. Adamuthe

Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.


Author(s):  
D. Akbari ◽  
M. Moradizadeh ◽  
M. Akbari

<p><strong>Abstract.</strong> This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MHS) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.</p>


Sign in / Sign up

Export Citation Format

Share Document