scholarly journals Analysis of Fuel Economy in Petrol Engines Due To High Compression of Steppes

2020 ◽  
Vol 9 (1) ◽  
pp. 1744-1748

All known automotive concerns and institutes specialized in ICE problems have worked to identify the relationship between the compression ratio of ICE and its efficiency and to investigate the nature of thermodynamic processes taking place in ICE. Numerous experiments have also been carried out to increase the compression ratio of ICE. But these works had a negative result. Building on this negative result, ICE theory adopted, as axioms, claims that the compression ratio of a gasoline engine cannot be higher than 14. That the most effective compression ratio of the diesel internal combustion engine is in the region 17-23, and at the compression ratio 40 it becomes zero. Experts and theorists were so established in the correctness of these provisions that at this stage the slightest attempt to question them caused a sharp reaction.

2013 ◽  
Vol 768 ◽  
pp. 250-254
Author(s):  
N. Balakrishnan ◽  
K. Mayilsamy ◽  
N. Nedunchezhian

Biomass derived vegetable oil is a promising alternative fuel for an internal combustion engine. Direct use of vegetable oil has inferior performance with higher emission due to its higher viscous in nature. This can be overcome by transesterification process with its byproduct which is called as used vegetable oil methyl ester. While blending this biodiesel with fossil diesel upto maximum of 30:70, will give the higher performance and lower emission than the fossil diesel alone. In this present study biodiesel in the form of B23 is used in a four stroke water cooled variable compression ratio engine without any modifications. The performance and emission characteristics are studied with different compression ratio and compared with a base line fossil diesel mode operation. This study reveals that the compression ratio of 18 is the optimum in the view of ignition delay, maximum pressure crank angle, exhaust gas temperature and Smoke emission.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8151
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.


Author(s):  
Michael R. Buchman ◽  
W. Brett Johnson ◽  
Amos G. Winter

Turbocharging can provide a cost effective means for increasing the power output and fuel economy of an internal combustion engine. A turbocharger added to an internal combustion engine consists of a coupled turbine and compressor. Currently, turbocharging is common in multi-cylinder engines, but it is not commonly used on single-cylinder engines due to the phase mismatch between the exhaust stroke (when the turbocharger is powered) and the intake stroke (when the engine intakes the compressed air). The proposed method adds an air capacitor, an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake, to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. This research builds on previous work where it was shown experimentally that a power gain of 29% was achievable and that analytically a power gain of 40–60% was possible using a turbocharger and air capacitor system. The goal of this study is to further analyze the commercial viability of this technology by analyzing the effect of air capacitor turbocharging on emissions, fuel economy, and power density. An experiment was built and conducted that looked at how air capacitor sizing affected emissions, fuel economy, and the equivalence ratio. The experimental data was then used to calibrate a computational model built in Ricardo Wave. Finally this model was used to evaluate strategies to further improve the performance of a single cylinder diesel turbocharged engine with an air capacitor.


Sign in / Sign up

Export Citation Format

Share Document