scholarly journals Advanced Patient Health Monitoring System using Power Line Communication Technology

Open source automation system is rapidly developing towards more reliable communication systems. In recent years for its convenient installation and low cost the power line increasingly become a popular transmission medium in creating industrial/ resident work. PLC is a technology uses power lines as physical media for data transmission. PLC offers a no new wires solution because the infrastructure has already been established. PLC modems are used for transmitting data at a rapid speed through a power line in a house, an office, a building, and a factory, etc. Due to this additional telemetry features, cost of the devices are more and all hospital or clinic cannot afford to buy them. Hence in our work, temperature, blood pressure and heart beat monitoring equipment based on power line communication is developed. This is cost effective equipment which uses existing power cables as communication medium. Power Line Modem (PLM) is used for transmitting and receiving the signals over power line cable. Signalsare modulated and demodulated using direct-sequence spread spectrum (DSSS) technology. When compared with other communication technologies like local area network (LAN), ZigBee, Bluetooth, the establishment cost for healthcare monitor using Power Line Communication (PLC) was low.

Circuit World ◽  
2019 ◽  
Vol 45 (3) ◽  
pp. 141-147 ◽  
Author(s):  
Karthie S. ◽  
Salivahanan S.

Purpose This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference rejection. Design/methodology/approach The conventional dual-stub filter is embedded with simple fractal-based triangular-circular geometries through various iterations to reject wireless local area network (WLAN) signals with a notched band at 5.8 GHz. Findings The filter covers a wide frequency band from 3.1 to 8.8 GHz and has a fractional bandwidth of 98 per cent with the lower passband of 57.5 per cent and upper passband of 31.6 per cent separated by a notched band at 5.8 GHz. The proposed wideband prototype bandpass filter is fabricated in FR-4 substrate using PCB technology and the simulation results are validated with measurement results which include insertion loss, return loss and group delay. The fabricated filter has a sharp rejection of 28.3 dB at 5.8 GHz. Measured results show good agreement with simulated responses. The performance of the fractal-based wideband filter is compared with other wideband bandpass filters. Originality/value In the proposed work, a fractal-based wideband bandpass filter with a notched band is reported. The conventional dual-stub filter is deployed with triangular-circular geometry to design a wideband filter with a notched band to suppress interference signals at WLAN frequency. The proposed wideband filter exhibits smaller size and better interference rejection compared to other wideband bandpass filter designs implemented on low-cost substrate reported in the literature. The aforementioned wideband filter finds application in wideband wireless communication systems.


Author(s):  
Fawzan Galib Abdul Karim Bawahab ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Abstrak. Pada penelitian ini, telah dilakukan analisa karakterisasi pada teknologi Direct Sequence Spread Spectrum dan Frequency Hopping Spread Spectrum, sebagai salah satu teknik multiple-access pada sistem komunikasi. Karakterisasi dilakukan untuk mencari bagaimana cara meningkatkan keoptimalan kedua sistem tersebut, dalam mengatasi masalah interferensi dengan sistem dan channel yang sama. Dan juga untuk menentukan veriabel apa yang mempengaruhi keoptimalan kedua sistem tersebut. Karakterisasi dilakukan dengan menentukan variabel-variabel yang mempengaruhi keoptimalan keduanya. Hasil dari karakterisasi, diketahui variabel-variabel yang mempengaruhi kemampuan sistem DSSS yaitu nilai frekuensi spreading (). Sedangkan untuk sistem FHSS yaitu nilai frekuensi spreading ( dan ) dan selisih antara frekuensi hopping data dengan frekuensi hopping interferensi . Kata Kunci: BER, DSSS, FHSS, Interference, Spread spectrum. Abstract. In this study, characterization of Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum technologies have been done, as one of the multiple-access techniques in communication systems. Characterization is done to find out how to improve the ability of the two systems, in solving interference problems with the same system and channel. And also to determine what veriabel affects the ability of the two systems. Characterization is done by determining the variables that affect the ability of both. The results of the characterization, known variables that affect the ability of the DSSS system are the spreading frequency value (). As for the FHSS system, the spreading frequency value ( and ) and the difference between frequency hopping data with frequency hopping interference .


Sign in / Sign up

Export Citation Format

Share Document