scholarly journals A Research on Discourse Access

— We are living in the era of intelligent machines where everything is replacing by machine, interpretation of hidden meaning of text/speech becomes necessary to understands by machine. The last few years have seen an emergence of new perspectives in understanding the meaning of the given text. Researchers are working hard for this kind of complex problem. Discourse comes under this theme of understanding hidden information from the text. Syntactical and semantic analysis plays important role in discourse analysis. This paper focuses on the work done by various researchers in understanding discourse using various methods of machine learning and deep learning techniques.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 578
Author(s):  
Laith Abualigah ◽  
Raed Abu Zitar ◽  
Khaled H. Almotairi ◽  
Ahmad MohdAziz Hussein ◽  
Mohamed Abd Elaziz ◽  
...  

Nowadays, learning-based modeling methods are utilized to build a precise forecast model for renewable power sources. Computational Intelligence (CI) techniques have been recognized as effective methods in generating and optimizing renewable tools. The complexity of this variety of energy depends on its coverage of large sizes of data and parameters, which have to be investigated thoroughly. This paper covered the most resent and important researchers in the domain of renewable problems using the learning-based methods. Various types of Deep Learning (DL) and Machine Learning (ML) algorithms employed in Solar and Wind energy supplies are given. The performance of the given methods in the literature is assessed by a new taxonomy. This paper focus on conducting comprehensive state-of-the-art methods heading to performance evaluation of the given techniques and discusses vital difficulties and possibilities for extensive research. Based on the results, variations in efficiency, robustness, accuracy values, and generalization capability are the most obvious difficulties for using the learning techniques. In the case of the big dataset, the effectiveness of the learning techniques is significantly better than the other computational methods. However, applying and producing hybrid learning techniques with other optimization methods to develop and optimize the construction of the techniques is optionally indicated. In all cases, hybrid learning methods have better achievement than a single method due to the fact that hybrid methods gain the benefit of two or more techniques for providing an accurate forecast. Therefore, it is suggested to utilize hybrid learning techniques in the future to deal with energy generation problems.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 33704-33755
Author(s):  
Alessandro Davoli ◽  
Giorgio Guerzoni ◽  
Giorgio M. Vitetta

2021 ◽  
pp. 155005942110608
Author(s):  
Jakša Vukojević ◽  
Damir Mulc ◽  
Ivana Kinder ◽  
Eda Jovičić ◽  
Krešimir Friganović ◽  
...  

In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.


2021 ◽  
Author(s):  
K. Suganthi ◽  
R. Karthik ◽  
G. Rajesh ◽  
Peter Ho Chiung Ching

Sign in / Sign up

Export Citation Format

Share Document