scholarly journals Modeling and Development of an Autonomous Underwater Vehicle ARYA for Object Recognition

2019 ◽  
Vol 8 (2) ◽  
pp. 5505-5510

Arya is an autonomous underwater vehicle (AUV) modeled and developed by team DTU-AUV comprising of undergraduate students from multidisciplinary backgrounds of Delhi Technological University (DTU), India, to participate in an IEEE backed Singapore AUV Challenge (SAUVC). This paper entails the rationale and methodology employed to design and integrate various systems onboard. Significant improvisations have been made in the structural design of the vehicle to enhance its hydrodynamic stability and maneuverability to perform discrete tasks in comparison to the previous vehicles developed by the team. The focus is laid on the embedded and power system to enhance reliability, modularity, and power distribution. The software stack is designed to run in decentralized multi-threaded agent architecture, with the threads handling pressure sensor, cameras, control system, IMU, mission planner each performing input and output operations in continuous loops. PID control algorithms achieve the desired dynamic control. The vision system is devised to monitor the marine environment and detect underwater contoured objects.

2017 ◽  
Vol 58 ◽  
pp. 560-571 ◽  
Author(s):  
Dario Lodi Rizzini ◽  
Fabjan Kallasi ◽  
Jacopo Aleotti ◽  
Fabio Oleari ◽  
Stefano Caselli

2020 ◽  
Vol 8 (7) ◽  
pp. 515 ◽  
Author(s):  
Artur Siqueira Nóbrega de Freitas ◽  
Alexander Alfonso Alvarez ◽  
Roberto Ramos ◽  
Ettore Apolonio de Barros

The structure of an autonomous underwater vehicle (AUV), usually composed of a cylindrical shell, may be exposed to high hydrostatic pressures where buckling collapse occurs before yield stress failure. In conventional submarines, welded stiffeners increase the buckling resistance, however, in small AUVs, they reduce the inner space and cause residual stresses. This work presents an innovative concept for the structural design of an AUV, proposing the use of sliding stiffeners that are part of the structure used to accommodate the electronics inside it. Since the sliding stiffeners are not welded to the shell, there are no residual stresses due to welding, the AUV fabrication process is simplified, enabling a reduction of the manufacturing cost, and the inner space is available to accommodate the equipment needed for the AUV mission. Moreover, they provide a higher buckling resistance when compared to that of an unstiffened cylindrical shell. A comparative analysis of the critical buckling loads for different shell designs was carried out considering the following: (i) the unstiffened shell, (ii) the shell with ring stiffeners, and (iii) the shell with sliding stiffeners. Results evidenced that major advantages were obtained by using the latter alternative against buckling.


2019 ◽  
Vol 9 (22) ◽  
pp. 4958 ◽  
Author(s):  
Lichuan Zhang ◽  
Lu Liu ◽  
Shuo Zhang ◽  
Sheng Cao

The application of Autonomous Underwater Vehicle (AUV) is expanding rapidly, which drives the urgent need of its autonomy improvement. Motion control system is one of the keys to improve the control and decision-making ability of AUVs. In this paper, a saturation based nonlinear fractional-order PD (FOPD) controller is proposed for AUV motion control. The proposed controller is can achieve better dynamic performance as well as robustness compared with traditional PID type controller. It also has the advantages of simple structure, easy adjustment and easy implementation. The stability of the AUV motion control system with the proposed controller is analyzed through Lyapunov method. Moreover, the controlled performance can also be adjusted to satisfy different control requirements. The outperformed dynamic control performance of AUV yaw and depth systems with the proposed controller is shown by the set-point regulation and trajectory tracking simulation examples.


Author(s):  
Shojiro Ishibashi ◽  
Hiroshi Yoshida ◽  
Tadahiro Hyakudome

The visual information is very important for the operation of an underwater vehicle such as a manned vehicle and a remotely operated vehicle (ROV). And it will be also essential for functions which should be applied to an autonomous underwater vehicle (AUV) for the next generation. Generally, it is got by optical sensors, and most underwater vehicles are equipped with various types of them. Above all, camera systems are applied as multiple units to the underwater vehicles. And they can construct a stereo camera system. In this paper, some new functions, which provide some type of visual information derived by the stereo vision system, are described. And methods to apply the visual information to the underwater vehicle and their utility are confirmed.


Sign in / Sign up

Export Citation Format

Share Document