scholarly journals An Efficient Technique for Detection of Fake Currency

2019 ◽  
Vol 8 (3) ◽  
pp. 1298-1305

During the past years, some of the researchers are using the matching techniques for identification of the fake currency either by using the Mathematical formulation or by using the readymade simulation tools. A lot of methods namely edge detection, segmentation, feature extraction, pattern matching has been used for finding and identification of the fake currency. In the present work, Principal Component Analysis (PCA) is used to detect the feature of currency through modeling and a proposed algorithm is elaborated to recognize the fake currency in the form of note Rs 2000 of Indian currency. Graphs are also designed to justify the present approach along with the comparison of results

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2748
Author(s):  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Núria Parés ◽  
Diego A. Tibaduiza ◽  
Francesc Pozo

Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over 99.9% after using the proposed damage classification methodology.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4117
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

The development of the medical applications for substances or materials that contact cells is important. Hence, it is necessary to elucidate how substances that surround cells affect gene expression during incubation. In the current study, we compared the gene expression profiles of cell lines that were in contact with collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


Author(s):  
Y-H. Taguchi ◽  
Mitsuo Iwadate ◽  
Hideaki Umeyama ◽  
Yoshiki Murakami ◽  
Akira Okamoto

Feature Extraction (FE) is a difficult task when the number of features is much larger than the number of samples, although that is a typical situation when biological (big) data is analyzed. This is especially true when FE is stable, independent of the samples considered (stable FE), and is often required. However, the stability of FE has not been considered seriously. In this chapter, the authors demonstrate that Principal Component Analysis (PCA)-based unsupervised FE functions as stable FE. Three bioinformatics applications of PCA-based unsupervised FE—detection of aberrant DNA methylation associated with diseases, biomarker identification using circulating microRNA, and proteomic analysis of bacterial culturing processes—are discussed.


Author(s):  
Mohsen Moshki ◽  
Mehran Garmehi ◽  
Peyman Kabiri

In this chapter, application of Principal Component Analysis (PCA) and one of its extensions on intrusion detection is investigated. This extended version of PCA is modified to cover an important shortcoming of traditional PCA. In order to evaluate these modifications, it is mathematically proved that these modifications are beneficial and later on a known dataset such as the DARPA99 dataset is used to verify results experimentally. To verify this approach, initially the traditional PCA is used to preprocess the dataset. Later on, using a simple classifier such as KNN, the effectiveness of the multiclass classification is studied. In the reported work, instead of traditional PCA, a revised version of PCA named Weighted PCA (WPCA) will be used for feature extraction. The results from applying the aforementioned method to the DARPA99 dataset show that this approach results in better accuracy than the traditional PCA when a number of features are limited, a number of classes are large, and a population of classes is unbalanced. In some situations WPCA outperforms traditional PCA by more than 1% in accuracy.


Sign in / Sign up

Export Citation Format

Share Document