scholarly journals Security and Privacy of Data in Cloud Computing

2019 ◽  
Vol 8 (2) ◽  
pp. 6544-6548

The cloud computing paradigm is being used because there is no need to setup additional IT infrastructure such as hardware and software, its low up-front cost. Security and privacy of data is important in day to today life especially for applications that uses cloud computing such as social media. Customer information that is stored at Cloud is crucial that needs to be protected against potential intruders. There is threat to maintain the data in transit and data at cloud due to different possible attacks. Due to this there is growing need of privacy and security of data. In this paper, the privacy and issues, privacy preservation techniques are addressed. In addition to this, in order to protect the data, the secret sharing algorithm is implemented and analyzed. The shamir’s secret sharing (k,n) algorithm is used to split the data into n partial shares which can be distributed in cloud. The user collects at least k partial shares to reconstruct the complete data. It is observed that if the file size is increased, the data recovery time is also increased. The paper concludes with privacy preservation guidelines.

Author(s):  
Kayalvili S ◽  
Sowmitha V

Cloud computing enables users to accumulate their sensitive data into cloud service providers to achieve scalable services on-demand. Outstanding security requirements arising from this means of data storage and management include data security and privacy. Attribute-based Encryption (ABE) is an efficient encryption system with fine-grained access control for encrypting out-sourced data in cloud computing. Since data outsourcing systems require flexible access control approach Problems arises when sharing confidential corporate data in cloud computing. User-Identity needs to be managed globally and access policies can be defined by several authorities. Data is dual encrypted for more security and to maintain De-Centralization in Multi-Authority environment.


2021 ◽  
Author(s):  
◽  
L. P. Bopape

With the advent of IoT, Device-to-Device (D2D) communications has afforded a new paradigm that reliably facilitates data exchange among devices in proximity without necessarily involving the base (core) network. It is geared towards the need to improve network performance where short-range communications is concerned, as well as supporting proximitybased services. However, the relentless growth in the number of network end-users as well as interconnected communication-capable devices, in the next-generation IoT-based 5G cellular networks has resulted in novel services and applications, most of which are security-sensitive. It is thus of paramount importance that security issues be addressed. A posing challenge is that the devices are mostly resource-constrained in both power and computing. As such, it is not practical to implement present day as well as traditional security frameworks and protocols under such a scenario, unless strides are taken towards the improvements of data throughput rates, higher bandwidth provisioning, lower round trip latencies, enhanced spectral efficiencies, and energy efficiency (leading to even lower power consumption, by the already constrained devices) in IoT 5G/LTE networks. Therefore, this work focused on exploring and designing schemes that enhance security and privacy among communicating parties. Otherwise, without reliable as well as robust privacy and security preservation measures in the network, most services and applications will be exposed to various forms of malicious attacks. With such a widened cyber-attack space, both privacy and security for end users can easily be compromised. The work herein addresses privacy for subscribers to the various available services and applications as well as security of the associated data. Ultimately, we propose a Fog-Cloud computing paradigm-assisted security framework that comprises two schemes. The aim is to implement a lightweight-based cartographic algorithm that ensures that communication overheads, round trip latencies, computational loads as well as energy consumption by the otherwise resource-constrained surveillance cameras deployed remotely, are kept minimal. Overall, by way of both analysis and simulation, we ascertain that a Fog-Cloud computing-based lightweight security-based scheme has the potential to greatly improve security and privacy preservation, as well as overall performance despite the resource-constrained nature of the devices.


2015 ◽  
pp. 1561-1584
Author(s):  
Hassan Takabi ◽  
Saman Taghavi Zargar ◽  
James B. D. Joshi

Mobile cloud computing has grown out of two hot technology trends, mobility and cloud. The emergence of cloud computing and its extension into the mobile domain creates the potential for a global, interconnected mobile cloud computing environment that will allow the entire mobile ecosystem to enrich their services across multiple networks. We can utilize significant optimization and increased operating power offered by cloud computing to enable seamless and transparent use of cloud resources to extend the capability of resource constrained mobile devices. However, in order to realize mobile cloud computing, we need to develop mechanisms to achieve interoperability among heterogeneous and distributed devices. We need solutions to discover best available resources in the cloud servers based on the user demands and approaches to deliver desired resources and services efficiently and in a timely fashion to the mobile terminals. Furthermore, while mobile cloud computing has tremendous potential to enable the mobile terminals to have access to powerful and reliable computing resources anywhere and anytime, we must consider several issues including privacy and security, and reliability in realizing mobile cloud computing. In this chapter, the authors first explore the architectural components required to realize a mobile cloud computing infrastructure. They then discuss mobile cloud computing features with their unique privacy and security implications. They present unique issues of mobile cloud computing that exacerbate privacy and security challenges. They also discuss various approaches to address these challenges and explore the future work needed to provide a trustworthy mobile cloud computing environment.


Author(s):  
Feng Xu ◽  
Mingming Su ◽  
Yating Hou

The Cloud computing paradigm can improve the efficiency of distributed computing by sharing resources and data over the Internet. However, the security levels of nodes (or severs) are not the same, thus, sensitive tasks and personal data may be scheduled (or shared) to some unsafe nodes, which can lead to privacy leakage. Traditional privacy preservation technologies focus on the protection of data release and process of communication, but lack protection against disposing sensitive tasks to untrusted computing nodes. Therefore, this article put forwards a protocol based on task-transformation, by which tasks will be transformed into another form in the task manager before they can be scheduled to other nodes. The article describes a privacy preservation algorithm based on separation sensitive attributes from values (SSAV) to realize the task-transformation function. This algorithm separates sensitive attributes in the tasks from their values, which make the malicious nodes cannot comprehend the real meaning of the values even they get the transformed tasks. Analysis and simulation results show that the authors' algorithm is more effective.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 335 ◽  
Author(s):  
T Veerraju ◽  
Dr K. Kiran Kumar

With the rapid advancement of Internet of Things has enabled to combine the intercommunication and interconnection between seamless networks. Cloud computing provides backend solutions and one among the most prominent technologies for the users, still cannot be solved all the problems such as latency of real time applications. However, a new computing paradigm comes in to the picture. Many of the researchers focused on this exemplar known as Fog/Edge computing, which has been planned to the extension of cloud services. Fog provides the services to the edge of the networks, which makes communication, computation and storage for end users through fog devices and for servers like controllers. We analyze the study, which aims to augment low bandwidth, latency along with the privacy and security.   The major problem in the Fog computing is security due to the limited resources. In this paper, we investigated the protection issues and confrontation of Fog and also provide countermeasures on security for different attacks. We focused the future security directions and challenges to address in fog networks.


Author(s):  
Syrine Sahmim Ep Guerbouj ◽  
Hamza Gharsellaoui ◽  
Sadok Bouamama

This journal article deals with the most important existing problems of security and privacy of the Cloud Computing (CC), Internet of Things (IoT) and Cloud of Things (CoT) concepts especially confidentiality issues. With the evolution of ubiquitous computing, everything is connected everywhere, therefore these concepts have been widely studied in the literature. However, due to the systems complexity and the difficulty to control each access attempt, intrusions and vulnerabilities will be more recurrent. To tackle this issue, researchers have been focused on various approaches enforcing security and privacy. In the present article, risk factors and solutions regarding these technologies are reviewed then current and future trends are discussed.


2019 ◽  
pp. 1440-1459
Author(s):  
Sara Usmani ◽  
Faiza Rehman ◽  
Sajid Umair ◽  
Safdar Abbas Khan

The novel advances in the field of Information Technology presented the people pleasure, luxuries and ease. One of the latest expansions in the Information Technology (IT) industry is Cloud Computing, a technology that uses the internet for storage and access of data. It is also known as on-demand computing. The end user can access personal data and applications anywhere any time with a device having internet. Cloud Computing has gained an enormous attention but it results in the issues of data security and privacy as the data is scattered on different machines in different places across the globe which is a serious threat to the technology. It has many advantages like flexibility, efficiency and scalability but many of the companies are hesitant to invest in it due to privacy concerns. In this chapter, the objective is to review the privacy and security issues in cloud storage of Big Data and to enhance the security in cloud environment so that end users can enjoy a trustworthy and reliable data storage and access.


Author(s):  
Hassan Takabi ◽  
Saman Taghavi Zargar ◽  
James B. D. Joshi

Mobile cloud computing has grown out of two hot technology trends, mobility and cloud. The emergence of cloud computing and its extension into the mobile domain creates the potential for a global, interconnected mobile cloud computing environment that will allow the entire mobile ecosystem to enrich their services across multiple networks. We can utilize significant optimization and increased operating power offered by cloud computing to enable seamless and transparent use of cloud resources to extend the capability of resource constrained mobile devices. However, in order to realize mobile cloud computing, we need to develop mechanisms to achieve interoperability among heterogeneous and distributed devices. We need solutions to discover best available resources in the cloud servers based on the user demands and approaches to deliver desired resources and services efficiently and in a timely fashion to the mobile terminals. Furthermore, while mobile cloud computing has tremendous potential to enable the mobile terminals to have access to powerful and reliable computing resources anywhere and anytime, we must consider several issues including privacy and security, and reliability in realizing mobile cloud computing. In this chapter, the authors first explore the architectural components required to realize a mobile cloud computing infrastructure. They then discuss mobile cloud computing features with their unique privacy and security implications. They present unique issues of mobile cloud computing that exacerbate privacy and security challenges. They also discuss various approaches to address these challenges and explore the future work needed to provide a trustworthy mobile cloud computing environment.


2019 ◽  
Vol 13 (2) ◽  
pp. 104-119 ◽  
Author(s):  
Feng Xu ◽  
Mingming Su ◽  
Yating Hou

The Cloud computing paradigm can improve the efficiency of distributed computing by sharing resources and data over the Internet. However, the security levels of nodes (or severs) are not the same, thus, sensitive tasks and personal data may be scheduled (or shared) to some unsafe nodes, which can lead to privacy leakage. Traditional privacy preservation technologies focus on the protection of data release and process of communication, but lack protection against disposing sensitive tasks to untrusted computing nodes. Therefore, this article put forwards a protocol based on task-transformation, by which tasks will be transformed into another form in the task manager before they can be scheduled to other nodes. The article describes a privacy preservation algorithm based on separation sensitive attributes from values (SSAV) to realize the task-transformation function. This algorithm separates sensitive attributes in the tasks from their values, which make the malicious nodes cannot comprehend the real meaning of the values even they get the transformed tasks. Analysis and simulation results show that the authors' algorithm is more effective.


Sign in / Sign up

Export Citation Format

Share Document