scholarly journals A Novel Multi-Parameter Tuned Optimizer for Information Retrieval based on Particle Swarm Optimization

2019 ◽  
Vol 8 (3) ◽  
pp. 1723-1731 ◽  

Tuning multi-parameter and parameter optimization in Information Retrieval has been a huge area of research and development, especially with BM25F scoring functions having a 2F+1 feature with F fields in the documents. The scoring and ranking function conventionally uses multiple input parameters, to augment the quality of results even at the value of huge calculation time. The searching and ranking documents in the medical literature encompass high recall rates, which are difficult to satisfy with multiple input parameters. The performance of the BM25F depends upon the choice of these F parameters. Particle Swarm Optimization (PSO) searches through the solution- space independently and discovers an optimal solution as opposed to improving and optimizing the gradient; henceforth it can straightforward optimize Mean Average Precision (MAP) a non-differentiable function. In this paper, the usage of PSO to tune multi-parameters is proposed to deal with the gaps in BM25Fscoring function. Also, the advantage of the proposed technique by directly optimizing the MAP has been discussed. Experimental results of quantitative performance metrics MAP and Mean Reciprocal Rank of the proposed PSO-optimized BM25F and most recent ranking algorithms have been compared. The performance measure results demonstrate that the proposed PSO-optimized BM25F performance measure outclasses the standard ranking methods for the OHSUMED data set

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3356
Author(s):  
Mustafa Hasan Albowarab ◽  
Nurul Azma Zakaria ◽  
Zaheera Zainal Abidin

Various aspects of task execution load balancing of Internet of Things (IoTs) networks can be optimised using intelligent algorithms provided by software-defined networking (SDN). These load balancing aspects include makespan, energy consumption, and execution cost. While past studies have evaluated load balancing from one or two aspects, none has explored the possibility of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-heuristic searching algorithms requires assurances that the solution space will be thoroughly explored. Optimising load balancing provides not only decision makers with optimised solutions but a rich set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP). Unlike existing models that only use crowding distance as a criterion for solution selection, our MP models probabilistically combine both crowding distance and crowding angle. More specifically, we only selected solutions that had more than a 0.5 probability of higher crowding distance and higher angular distribution. In addition, binary variants of the approaches were generated based on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP). After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing model. Both tests proved that our DAMP and AMP models were far superior to the state of the art standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of cloud networks.


Author(s):  
Ying Tan

Compared to conventional PSO algorithm, particle swarm optimization algorithms inspired by immunity-clonal strategies are presented for their rapid convergence, easy implementation and ability of optimization. A novel PSO algorithm, clonal particle swarm optimization (CPSO) algorithm, is proposed based on clonal principle in natural immune system. By cloning the best individual of successive generations, the CPSO enlarges the area near the promising candidate solution and accelerates the evolution of the swarm, leading to better optimization capability and faster convergence performance than conventional PSO. As a variant, an advance-and-retreat strategy is incorporated to find the nearby minima in an enlarged solution space for greatly accelerating the CPSO before the next clonal operation. A black hole model is also established for easy implementation and good performance. Detailed descriptions of the CPSO algorithm and its variants are elaborated. Extensive experiments on 15 benchmark test functions demonstrate that the proposed CPSO algorithms speedup the evolution procedure and improve the global optimization performance. Finally, an application of the proposed PSO algorithms to spam detection is provided in comparison with the other three methods.


2015 ◽  
Vol 13 (03) ◽  
pp. 1541007 ◽  
Author(s):  
Marcus C. K. Ng ◽  
Simon Fong ◽  
Shirley W. I. Siu

Protein–ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden–Fletcher–Goldfarb–Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein–ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51–60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein–ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 529
Author(s):  
Taj-Aldeen Naser Abdali ◽  
Rosilah Hassan ◽  
Ravie Chandren Muniyandi ◽  
Azana Hafizah Mohd Aman ◽  
Quang Ngoc Nguyen ◽  
...  

Mobile Ad-hoc Network (MANETs) is a wireless network topology with mobile network nodes and movable communication routes. In addition, the network nodes in MANETs are free to either join or leave the network. Typically, routing in MANETs is multi-hop because of the limited communication range of nodes. Then, routing protocols have been developed for MANETs. Among them, energy-aware location-aided routing (EALAR) is an efficient reactive MANET routing protocol that has been recently obtained by integrating particle swarm optimization (PSO) with mutation operation into the conventional LAR protocol. However, the mutation operation (nonuniform) used in EALAR has some drawbacks, which make EALAR provide insufficient exploration, exploitation, and diversity of solutions. Therefore, this study aims to propose to apply the Optimized PSO (OPSO) via adopting a mutation operation (uniform) instead of nonuniform. The OPSO is integrated into the LAR protocol to enhance all critical performance metrics, including packet delivery ratio, energy consumption, overhead, and end-to-end delay.


2011 ◽  
Vol 110-116 ◽  
pp. 3713-3719
Author(s):  
N. C. Hiremath ◽  
Sadanand Sahu ◽  
Manoj Kumar Tiwari

The strategic design and operation of outbound logistics network in an automotive manufacturing supply chain is directly related with the competitive strategy adopted by the firm. We discuss here an outbound logistics network model with four echelons and flexible delivery modes by incorporating cross-dock facility in the network. The paper aims to achieve a minimum total logistics cost for flexible delivery modes adopted in the network. The mathematical model is formulated as a mixed integer programming model and solved by using a hybrid algorithm named co-evolutionary immune-particle swarm optimization with penetrated hyper-mutation (COIPSO-PHM). The proposed model is combinatorial in nature owing to varying problem instances. The proposed solution methodology is tested on a sample data set mimicking the real life situation and the results are found to be satisfactory.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Lizhi Cui ◽  
Zhihao Ling ◽  
Josiah Poon ◽  
Simon K. Poon ◽  
Junbin Gao ◽  
...  

This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO), for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM) model is designed to transform these parameters to scalar values, which indicate the fitness for all parameters. Thirdly, rough solutions are found by searching individual target for every parameter, and reinitialization only around these rough solutions is executed. Then, the Particle Swarm Optimization (PSO) algorithm is adopted to obtain the optimal parameters by minimizing the fitness of these new parameters given by the GRCM model. Finally, spectra for the compounds are estimated based on the optimal parameters and the HPLC-DAD data set. Through simulations and experiments, following conclusions are drawn: (1) the GRCM-PSO method can separate the chromatogram peaks and spectra from the HPLC-DAD data set without knowing the number of the compounds in advance even when severe overlap and white noise exist; (2) the GRCM-PSO method is able to handle the real HPLC-DAD data set.


2012 ◽  
Vol 424-425 ◽  
pp. 535-539
Author(s):  
Liang Ming Hu ◽  
Yi Zhi Li

Particle Swarm Optimization (PSO) algorithm is a technique for optimization based on iteration, which initializes system to product a series of random solutions, in this solution space, particles commit themselves to search for a better solution and in the final the optimal one is found. Applying this algorithm to the design of gravity dam section then we find: PSO, as shown by the example given in this paper, is an available algorithm which is not only tally with the actual situation, but safe and economical. So, PSO provides a new idea and method for optimization design of gravity dam section.


Author(s):  
Mohammad Reza Daliri

AbstractIn this article, we propose a feature selection strategy using a binary particle swarm optimization algorithm for the diagnosis of different medical diseases. The support vector machines were used for the fitness function of the binary particle swarm optimization. We evaluated our proposed method on four databases from the machine learning repository, including the single proton emission computed tomography heart database, the Wisconsin breast cancer data set, the Pima Indians diabetes database, and the Dermatology data set. The results indicate that, with selected less number of features, we obtained a higher accuracy in diagnosing heart, cancer, diabetes, and erythematosquamous diseases. The results were compared with the traditional feature selection methods, namely, the F-score and the information gain, and a superior accuracy was obtained with our method. Compared to the genetic algorithm for feature selection, the results of the proposed method show a higher accuracy in all of the data, except in one. In addition, in comparison with other methods that used the same data, our approach has a higher performance using less number of features.


Sign in / Sign up

Export Citation Format

Share Document