scholarly journals A Simple Yet Reliable Facial Emotion Detection for Campus Environment

2019 ◽  
Vol 8 (3) ◽  
pp. 2477-2481

Nowadays, crime incidents like stealing, fighting and harassment often occur in campus leading to serious consequences. Students do not feel secure to study in campus anymore. Thus, a simple facial emotion detection system using a Raspberry Pi is introduced to help mitigating the issue before getting worse in campus. Two algorithms are used for this project including Haar Cascade and Local Binary Pattern (LBP) algorithms. OpenCV is a library that can be used for image processing. LBP algorithm is used for face detection in OpenCV. When a person enters the specified area, the camera will capture the image and detect the image of the person. Then, a rectangular box appears on the face image of the person. The image is automatically sent to the email. The face detection is enhanced by adding a face alignment. The face alignment is used to detect the location of many points on the face. It recognizes the emotions for each face and gives the confidence score. The value 0 of confidence score is the perfect face recognition. Although the system is simple, it is still reliable to be used in a campus environment.

2021 ◽  
Vol 4 (1) ◽  
pp. 67-77
Author(s):  
Fransiska Sisilia Mukti ◽  
Lia Farokhah ◽  
Nur Lailatul Aqromi

Bus is one of public transportation and as the most preferable by Indonesian to support their mobility. The high number of bus traffics then demands the bus management to provide the maximum service for their passenger, in order to gain public trust. Unfortunately, in the reality passenger list’s fraud is often faced by the bus management, there is a mismatch list between the amount of deposits made by bus driver and the number of passengers carried by the bus, and as the result it caused big loss for the Bus management. Automatic Passenger Counting (APC) then as an artificial intelligence program that is considered to cope with the bus management problems. This research carried out an APC technology based on passenger face detection using the Viola-Jones method, which is integrated with an embedded system based on the Internet of Things in the processing and data transmission. To detect passenger images, a webcam is provided that is connected to the Raspberry pi which is then sent to the server via the Internet to be displayed on the website provided. The system database will be updated within a certain period of time, or according to the stop of the bus (the system can be adjusted according to management needs). The system will calculate the number of passengers automatically; the bus management can export passenger data whenever as they want. There are 3 main points in the architecture of modeling system, they are information system design, device architecture design, and face detection mechanism design to calculate the number of passengers. A system design test is carried out to assess the suitability of the system being built with company needs. Then, based on the questionnaire distributed to the respondent, averagely 85.12 % claim that the Face detection system is suitability. The score attained from 4 main aspects including interactivity, aesthetics, layout and personalization


2019 ◽  
Vol 8 (4) ◽  
pp. 2236-2239

This Paper represents the face detection using advanced method deep neural network which uses deep learning frame work. The old models used to detect the faces were like Haar-cascade method which detect the faces with good approaches but there is some uncertainty in the accuracy of the old models, so in this system we will use the latest deep neural network model which is embedded with latest open cv and by using the deep learning model frame work which is weighted with some other files. By using this model, we can achieve the better accuracy in face detection which can be used for further purposes like auto focus in cameras, counting number of people etc. This model detects the faces accurately and paves the way for better recognition systems which can be used in many face biometric applications. For this purpose, low-cost computer board Raspberry Pi and Camera Sensor will be used.


2021 ◽  
Vol 3 (1) ◽  
pp. 33-38
Author(s):  
Febiannisa Utami ◽  
Suhendri Suhendri ◽  
Muhammad Abdul Mujib

The large number of citizens in an organization makes the development of an attendance system or citizen detection in a place important in the running of work activities in the organization. Utilization of an IP Camera which is only used for regular monitoring without further detection of the needs of citizens in the organization made the development of personnel detection developed for monitoring the presence of personnel. With the development of a face detection system, it is hoped that the facial algorithm development system will be developed using an IP Camera. Face detection has been developed which has many and special features which aim to determine whether or not a face has been detected in an image. With image management that is developed in face detection, detection will be faster and more accurate because the color is processed into gray degrees so that there are fewer color pixels than those with colors. By using the Python programming language and an image detection library called OpenCV, less code will be designed. This study uses the Viola Jones method, which is a fast and accurate face detection method developed by Paul Viola and Michael Jones. In this study, the Viola Jones method uses the Haar Cascade algorithm which functions as a detection feature in the system and is combined with the internal image process and the AdaBoost Learning and Cascade Classifier so that the detected face object will easily classify whether the object is a face or not. In this case the Cascade Classfier used in this study is the face and eyes. The development of this algorithm is carried out for face detection and recognition. The detection is done by taking pictures with the process taken using a webcam. The system will take several pictures and then the image data will be stored in a folder called dataSet. After that, all data is trained so that it can be recognized by the system. With retrieval, detection and recognition limitations that can only be taken from a distance of less than three meters, face detection on the IP Camera can still read objects other than faces. With recognition and accuracy on the webcam camera, about 80,5% this system can be developed with the Haar Cascade algorithm and the Haar Cascade algorithm precisely to be applied to the development of faced detection and face recognition. By developing the Haar Cascade algorithm for face detection, problems and utilization of an organization's data can be more easily detected and used by IP cameras that can support the performance process of face detection and recognition


In the last few years, face recognitions owned considerable consideration and liked together of the foremost used functions within the area of image evaluation and recognition. Face detection reflects on consideration of an incredible section of face attention operations. The technique of face detection in pixels is elaborate with many features’ variabilities provided throughout human faces. Faces include pose, expression, smile, role and orientation, pores and complexion, the presence of glasses or facial hair, variations in digicam gain, lighting conditions, and photo resolutions. Haar Cascade classifier is of outstanding assist when performing this undertaking smoothly. Face detection goes to possess a dramatic impression on the face detection field, as a result, familiarizing yourself with its functions like attendance recording system with the help of camera, Mask detection system. In this paper, we proposed a face detection system for the utilization of computer learning, especially OpenCV. The mandatory step required is face detection which we did with the usage of a broadly used step referred to as the haarcascade_frontalface_default classifier, python and its module.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012046
Author(s):  
A S Priambodo ◽  
F Arifin ◽  
A Nasuha ◽  
A Winursito

Abstract The fundamental aim of this research is to develop a face detection system for a quadcopter in order to follow the face object. This research has two main stages, namely the face detection stage and the position control system. The face detection algorithm used in this research is the haar cascade method which is run using the python and OpenCV programming languages. The algorithm worked well, getting around 16fps on a low spec computer without a GPU unit. The results of the face detection algorithm are proven to be able to recognize faces from the camera installed on the DJI Tello mini drone. The mini drone was chosen because it is small and light, so it is harmless, and testing can be carried out indoors. Besides, the DJI Tello can be programmed easily using the python programming language. The drone’s position is then compared with the set point in the middle of the image to obtain errors so that control signals can be calculated for up/down, forward/backward, and right/left movements. From the testing results, the response speed that occurs in the right/left and up/down movements is less than 2 seconds, while for the forward/backward movement, it is less than 3 seconds.


2021 ◽  
pp. 1-11
Author(s):  
Suphawimon Phawinee ◽  
Jing-Fang Cai ◽  
Zhe-Yu Guo ◽  
Hao-Ze Zheng ◽  
Guan-Chen Chen

Internet of Things is considerably increasing the levels of convenience at homes. The smart door lock is an entry product for smart homes. This work used Raspberry Pi, because of its low cost, as the main control board to apply face recognition technology to a door lock. The installation of the control sensing module with the GPIO expansion function of Raspberry Pi also improved the antitheft mechanism of the door lock. For ease of use, a mobile application (hereafter, app) was developed for users to upload their face images for processing. The app sends the images to Firebase and then the program downloads the images and captures the face as a training set. The face detection system was designed on the basis of machine learning and equipped with a Haar built-in OpenCV graphics recognition program. The system used four training methods: convolutional neural network, VGG-16, VGG-19, and ResNet50. After the training process, the program could recognize the user’s face to open the door lock. A prototype was constructed that could control the door lock and the antitheft system and stream real-time images from the camera to the app.


Author(s):  
Vikram Kulkarni ◽  
Viswaprakash Babu

In this proposed embedded car security system, FDS(Face Detection System) is used to detect the face of the driver and compare it with the predefined face. For example, in the night when the car’s owner is sleeping and someone theft the car then FDS obtains images by one tiny web camera which can be hidden easily in somewhere in the car. FDS compares the obtained image with the predefined images if the image doesn’t match, then the information is sent to the owner through MMS. So now owner can obtain the image of the thief in his mobile as well as he can trace the location through GPS. The location of the car as well as its speed can be displayed to the owner through SMS. So by using this system, owner can identify the thief image as well as the location of the car This system prototype is built on the base of one embedded platform in which one SoC named “SEP4020”(works at 100MHz) controls all the processes .Experimental results illuminate the validity of this car security system.


2020 ◽  
Vol 17 (5) ◽  
pp. 2342-2348
Author(s):  
Ashutosh Upadhyay ◽  
S. Vijayalakshmi

In the field of computer vision, face detection algorithms achieved accuracy to a great extent, but for the real time applications it remains a challenge to maintain the balance between the accuracy and efficiency i.e., to gain accuracy computational cost also increases to deal with the large data sets. This paper, propose half face detection algorithm to address the efficiency of the face detection algorithm. The full face detection algorithm consider complete face data set for training which incur more computation cost. To reduce the computation cost, proposed model captures the features of the half of the face by assuming that the human face is symmetric about the vertical axis passing through the nose and train the system using reduced half face features. The proposed algorithm extracts Linear Binary Pattern (LBP) features and train model using adaboost classifier. Algorithm performance is presented in terms of the accuracy i.e., True Positive Rate (TPR), False Positive Rate (FTR) and face recognition time complexity.


Sign in / Sign up

Export Citation Format

Share Document