scholarly journals Performance, Combustion and Emission Characteristics of Direct Injection Diesel Engine Fueled With Castor Oil Methyl Esters and Ethanol Blends Equipped With 6 Hole Nozzle

2019 ◽  
Vol 8 (3) ◽  
pp. 5527-5530

Depletion of fossil fuel reserves and stringent pollution norms has created a need for search alternate source that can fuel internal combustion engine. The fuels obtained from green matter has got great potential to replace conventional fossil fuels to power internal combustion engine (ICE). But the performance of the ICE are influenced by many parameters such as injector opening pressure, injection timing, and combustion chamber profile. Current work deals with evaluation of engine performance, combustion characteristics of direction injection diesel engine fitted with re-entrant toroidal (RET) combustion chamber equipped with six hole nozzle fueled with castor oil methyl esters (CAOME) and ethanol blends. The peak value of break thermal efficiency (BTE) is found to be 26.34% at 75% load for a blend 80D+5B+15E with minimum emissions and with combustion duration and ignition delay in comparison with diesel

2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


2019 ◽  
Vol 42 ◽  
pp. e43882
Author(s):  
Omar Seye ◽  
Rubem Cesar Rodrigues Souza ◽  
Ramon Eduardo Pereira Silva ◽  
Robson Leal da Silva

This paper evaluates internal combustion engine performance parameters (Specific Fuel Consumption and engine torque) and pollutant emissions (O2, CO, and NOX), and also, provide an assessment of economic viability for operation in Amazonas state. Power supply to the communities in the Amazon region has as characteristics high costs for energy generation and low fare. Extractive activities include plenty of oily plant species, with potential use as biofuel for ICE (Diesel cycle) to obtain power generation together with pollutant emission reduction in comparison to fossil fuel. Experimental tests were carried out with five fuel blends (crude palm oil) and diesel, at constant angular speed (2,500 RPM – stationary regime), and four nominal engine loads (0%, 50%, 75%, and 100%) in a test bench dynamometer for an engine-driven generator for electrical-power, 4-Stroke internal combustion engine, Diesel cycle. Main conclusions are: a) SFC and torque are at the same order of magnitude for PO-00 (diesel) and PO-xx at BHP50/75/100%; b) O2 emissions show consistent decreasing behavior as BHP increases, compatible to a rich air-fuel ratio (λ > 1) and, at the same BHP condition, O2 (%) is slightly lower for higher PO-xx content; c) The CO emissions for PO-00 consistently decrease while the BHP increases, as for PO-xx those values present a non-linear behavior; at BHP75%-100_loads, CO emissions are higher for PO-20 and PO-25 in comparison to PO-00; d) The overall trend for NOX emissions is to increase, the higher the BHP; In general, NOx emissions are lower for PO-xx in comparison to PO-00, except for PO-10 which presents slightly higher values than PO-00 for all BHP range; e) Assessment on-trend costs indicates that using palm oil blends for Diesel engine-driven generators in the Amazon region is economically feasible, with an appropriate recommendation for a rated power higher than 800 kW.


Author(s):  
A. Katijan ◽  
A. H. Kamardin

The compression ratio has a significant impact on engine power, fuel economy, emission, and other performances of internal combustion engines. Basic engine theory states that a higher compression ratio produces higher torque and horsepower. One way of having different compression ratio is by changing piston head shape. A piston is a cylindrical engine component that slides back and forth in the cylinder bore via forces produced during the combustion process. The piston acts as a movable end of the combustion chamber transmitting power generated from the burning of fuel and air mixture in the combustion chamber. The objective of this study is to compare the engine performance in horsepower and torque produced by the different shapes of the piston head in an internal combustion engine. Three pistons with different head shapes -  standard, mug (low compression) and dome (high compression) with a compression ratio of 8.8:1, 7.61:1 and 10.06:1 were selected for the study. An experiment was also performed to a standard piston installed with 1.5 mm gasket, which has a compression ratio of 7.31. The experiments were carried out using a standard internal combustion engine of a Honda EX5 motorcycle. The engine runs on a chassis dynamometer to measure its torque and horsepower. Piston performance was evaluated based on the maximum available torque and horsepower. The result shows that all three pistons produce different torque and horsepower. The domed piston head produces higher torque and horsepower followed by the standard and mug. By just changing the piston head shape, torque and horsepower increased up to 7.14% and 20.05%  respectively.


2019 ◽  
Vol 2019 (3) ◽  
pp. 51-57
Author(s):  
Евгений Сливинский ◽  
Evgeniy Slivinskiy

It is well-known that any internal combustion engine consists of some simplest interconnected mechanisms. Thus, as constituent mechanisms are a crank gear, a valve timing gear and mechanisms of auxiliary units. One of their significant drawbacks is an imperfection of a valve timing gear decreasing considerably diesel engine performance. To eliminate this drawback at Bunin SU of Yelets there is developed a promising design of a valve timing gear at the invention level having an increased operational reliability at the expense of valves manufactured with the use of patent RU2403408.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Singh P. Shivakumar

An internal combustion engine essentially requires a fuel which must have sufficient calorific value to produce enough power, and oxygen for the combustion of fuel. In normal vehicles fuel will be supplied from a fuel tank equipped with it. And oxygen will be taken from the atmospheric itself. Under normal conditions the percentage of oxygen present in atmospheric air will be around 21% of the total volume. Studies shows that by increasing the oxygen percentage in the inlet air increases engine performance and reduces emission produced by the engine.


Sign in / Sign up

Export Citation Format

Share Document