scholarly journals Effect of the Parametric Variations of Semiconductor Screen on Line Parameters and Wave Properties of Underground Cable

2019 ◽  
Vol 8 (4) ◽  
pp. 5279-5287

Detection and understanding of different high frequency phenomenon in multilayered underground (UG) cable require a thorough study of wave propagation mechanism which is governed by the line parameters of the cable. Line parameters are the functions of cable geometric and electromagnetic properties. Therefore the inclusion of semiconducting screen in cable structure influences the line parameters as well as wave properties of the cable. This paper aims to investigate the effects of the variation of different geometric and electrical properties of the semiconducting screen on line parameters as well as wave propagation characteristics of UG cable over a wide range of frequency. The complete impedance matrix of cable considering the effect of the semiconducting screen is derived using loop current analysis without invoking the theory of a double-layered conductor system. A comparative analysis on the effect of parametric variations of the semiconducting screen on line parameters as well as wave properties between the cable with and without semiconducting screen over a wide range of frequency is performed. This analysis indicates that the wave properties like attenuation or phase velocity are considerably influenced by inclusions of the semiconducting screen in cable structure, especially at high frequency.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 169371-169384
Author(s):  
Swarnankur Ghosh ◽  
Mousam Ghosh ◽  
Supriyo Das

2021 ◽  
Vol 263 (5) ◽  
pp. 1744-1755
Author(s):  
Pranav Sriganesh ◽  
Rick Dehner ◽  
Ahmet Selamet

Decades of successful research and development on automotive silencers for engine breathing systems have brought about significant reductions in emitted engine noise. A majority of this research has pursued airborne noise at relatively low frequencies, which typically involve plane wave propagation. However, with the increasing demand for downsized turbocharged engines in passenger cars, high-frequency compressor noise has become a challenge in engine induction systems. Elevated frequencies promote multi-dimensional wave propagation rendering at times conventional silencer treatments ineffective due to the underlying assumption of one-dimensional wave propagation in their design. The present work focuses on developing a high-frequency silencer that targets tonal noise at the blade-pass frequency within the compressor inlet duct for a wide range of rotational speeds. The approach features a novel "acoustic straightener" that creates exclusive plane wave propagation near the silencing elements. An analytical treatment is combined with a three-dimensional acoustic finite element method to guide the early design process. The effects of mean flow and nonlinearities on acoustics are then captured by three-dimensional computational fluid dynamics simulations. The configuration developed by the current computational effort will set the stage for further refinement through future experiments.


Author(s):  
W.J. de Ruijter ◽  
Peter Rez ◽  
David J. Smith

Digital computers are becoming widely recognized as standard accessories for electron microscopy. Due to instrumental innovations the emphasis in digital processing is shifting from off-line manipulation of electron micrographs to on-line image acquisition, analysis and microscope control. An on-line computer leads to better utilization of the instrument and, moreover, the flexibility of software control creates the possibility of a wide range of novel experiments, for example, based on temporal and spatially resolved acquisition of images or microdiffraction patterns. The instrumental resolution in electron microscopy is often restricted by a combination of specimen movement, radiation damage and improper microscope adjustment (where the settings of focus, objective lens stigmatism and especially beam alignment are most critical). We are investigating the possibility of proper microscope alignment based on computer induced tilt of the electron beam. Image details corresponding to specimen spacings larger than ∼20Å are produced mainly through amplitude contrast; an analysis based on geometric optics indicates that beam tilt causes a simple image displacement. Higher resolution detail is characterized by wave propagation through the optical system of the microscope and we find that beam tilt results in a dispersive image displacement, i.e. the displacement varies with spacing. This approach is valid for weak phase objects (such as amorphous thin films), where transfer is simply described by a linear filter (phase contrast transfer function) and for crystalline materials, where imaging is described in terms of dynamical scattering and non-linear imaging theory. In both cases beam tilt introduces image artefacts.


1977 ◽  
Vol 24 (1) ◽  
pp. 673-677 ◽  
Author(s):  
J. J. Lipsett ◽  
I. L. Fowler ◽  
R. J. Dinger ◽  
H. L. Malm

Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2000 ◽  
Vol 122 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4,-trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations. [S0195-0738(00)00902-X]


Sign in / Sign up

Export Citation Format

Share Document