scholarly journals Skin Diseases Prediction using Deep Learning Framework

2020 ◽  
Vol 8 (6) ◽  
pp. 4781-4784

Dermatological diseases are found to induce a serious impact on the health of millions of people as everyone is affected by almost all types of skin disorders every year. Since the human analysis of such diseases takes some time and effort, and current methods are only used to analyse singular types of skin diseases, there is a need for a more high-level computer-aided expertise in the analysis and diagnosis of multi-type skin diseases. This paper proposes an approach to use computer-aided techniques in deep learning neural networks such as Convolutional neural networks (CNN) and Residual Neural Networks (ResNet) to predict skin diseases real-time and thus provides more accuracy than other neural networks.

2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2020 ◽  
Vol 34 (05) ◽  
pp. 8139-8146
Author(s):  
Duong Le ◽  
My Thai ◽  
Thien Nguyen

The current deep learning works on metaphor detection have only considered this task independently, ignoring the useful knowledge from the related tasks and knowledge resources. In this work, we introduce two novel mechanisms to improve the performance of the deep learning models for metaphor detection. The first mechanism employs graph convolutional neural networks (GCN) with dependency parse trees to directly connect the words of interest with their important context words for metaphor detection. The GCN networks in this work also present a novel control mechanism to filter the learned representation vectors to retain the most important information for metaphor detection. The second mechanism, on the other hand, features a multi-task learning framework that exploits the similarity between word sense disambiguation and metaphor detection to transfer the knowledge between the two tasks. The extensive experiments demonstrate the effectiveness of the proposed techniques, yielding the state-of-the-art performance over several datasets.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 59069-59080 ◽  
Author(s):  
Peng Jiang ◽  
Yuehan Chen ◽  
Bin Liu ◽  
Dongjian He ◽  
Chunquan Liang

Author(s):  
Robinson Jiménez-Moreno ◽  
Javier Orlando Pinzón-Arenas ◽  
César Giovany Pachón-Suescún

This article presents a work oriented to assistive robotics, where a scenario is established for a robot to reach a tool in the hand of a user, when they have verbally requested it by his name. For this, three convolutional neural networks are trained, one for recognition of a group of tools, which obtained an accuracy of 98% identifying the tools established for the application, that are scalpel, screwdriver and scissors; one for speech recognition, trained with the names of the tools in Spanish language, where its validation accuracy reach a 97.5% in the recognition of the words; and another for recognition of the user's hand, taking in consideration the classification of 2 gestures: Open and Closed hand, where a 96.25% accuracy was achieved. With those networks, tests in real time are performed, presenting results in the delivery of each tool with a 100% of accuracy, i.e. the robot was able to identify correctly what the user requested, recognize correctly each tool and deliver the one need when the user opened their hand, taking an average time of 45 seconds in the execution of the application.


Author(s):  
Zulong Diao ◽  
Xin Wang ◽  
Dafang Zhang ◽  
Yingru Liu ◽  
Kun Xie ◽  
...  

Graph convolutional neural networks (GCNN) have become an increasingly active field of research. It models the spatial dependencies of nodes in a graph with a pre-defined Laplacian matrix based on node distances. However, in many application scenarios, spatial dependencies change over time, and the use of fixed Laplacian matrix cannot capture the change. To track the spatial dependencies among traffic data, we propose a dynamic spatio-temporal GCNN for accurate traffic forecasting. The core of our deep learning framework is the finding of the change of Laplacian matrix with a dynamic Laplacian matrix estimator. To enable timely learning with a low complexity, we creatively incorporate tensor decomposition into the deep learning framework, where real-time traffic data are decomposed into a global component that is stable and depends on long-term temporal-spatial traffic relationship and a local component that captures the traffic fluctuations. We propose a novel design to estimate the dynamic Laplacian matrix of the graph with above two components based on our theoretical derivation, and introduce our design basis. The forecasting performance is evaluated with two realtime traffic datasets. Experiment results demonstrate that our network can achieve up to 25% accuracy improvement.


2020 ◽  
Vol 10 (7) ◽  
pp. 2488 ◽  
Author(s):  
Muhammad Naseer Bajwa ◽  
Kaoru Muta ◽  
Muhammad Imran Malik ◽  
Shoaib Ahmed Siddiqui ◽  
Stephan Alexander Braun ◽  
...  

Propensity of skin diseases to manifest in a variety of forms, lack and maldistribution of qualified dermatologists, and exigency of timely and accurate diagnosis call for automated Computer-Aided Diagnosis (CAD). This study aims at extending previous works on CAD for dermatology by exploring the potential of Deep Learning to classify hundreds of skin diseases, improving classification performance, and utilizing disease taxonomy. We trained state-of-the-art Deep Neural Networks on two of the largest publicly available skin image datasets, namely DermNet and ISIC Archive, and also leveraged disease taxonomy, where available, to improve classification performance of these models. On DermNet we establish new state-of-the-art with 80% accuracy and 98% Area Under the Curve (AUC) for classification of 23 diseases. We also set precedence for classifying all 622 unique sub-classes in this dataset and achieved 67% accuracy and 98% AUC. On ISIC Archive we classified all 7 diseases with 93% average accuracy and 99% AUC. This study shows that Deep Learning has great potential to classify a vast array of skin diseases with near-human accuracy and far better reproducibility. It can have a promising role in practical real-time skin disease diagnosis by assisting physicians in large-scale screening using clinical or dermoscopic images.


2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Min Zeng ◽  
Min Li ◽  
Fang-Xiang Wu ◽  
Yaohang Li ◽  
Yi Pan

Abstract Background Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods cannot fully represent the topological features of biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current shallow machine learning-based methods are designed to handle the imbalanced characteristics. Results We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale convolutional neural networks and a sampling technique to identify essential proteins. In DeepEP, the node2vec technique is applied to automatically learn topological and semantic features for each protein in protein-protein interaction (PPI) network. Gene expression profiles are treated as images and multi-scale convolutional neural networks are applied to extract their patterns. In addition, DeepEP uses a sampling method to alleviate the imbalanced characteristics. The sampling method samples the same number of the majority and minority samples in a training epoch, which is not biased to any class in training process. The experimental results show that DeepEP outperforms traditional centrality methods. Moreover, DeepEP is better than shallow machine learning-based methods. Detailed analyses show that the dense vectors which are generated by node2vec technique contribute a lot to the improved performance. It is clear that the node2vec technique effectively captures the topological and semantic properties of PPI network. The sampling method also improves the performance of identifying essential proteins. Conclusion We demonstrate that DeepEP improves the prediction performance by integrating multiple deep learning techniques and a sampling method. DeepEP is more effective than existing methods.


Sign in / Sign up

Export Citation Format

Share Document