Regular parallelisms on $\mathrm{PG}(3,\mathbb R)$ admitting a 2-torus action

Author(s):  
Rainer Löwen ◽  
Günter F. Steinke
Keyword(s):  
Author(s):  
Christine Escher ◽  
Catherine Searle

Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.


2017 ◽  
Vol 60 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Jim Carrell ◽  
Kiumars Kaveh

AbstractLet G denote a reductive algebraic group over C and x a nilpotent element of its Lie algebra 𝔤. The Springer variety Bx is the closed subvariety of the flag variety B of G parameterizing the Borel subalgebras of 𝔤 containing x. It has the remarkable property that the Weyl group W of G admits a representation on the cohomology of Bx even though W rarely acts on Bx itself. Well-known constructions of this action due to Springer and others use technical machinery from algebraic geometry. The purpose of this note is to describe an elementary approach that gives this action when x is what we call parabolic-surjective. The idea is to use localization to construct an action of W on the equivariant cohomology algebra H*S (Bx), where S is a certain algebraic subtorus of G. This action descends to H*(Bx) via the forgetful map and gives the desired representation. The parabolic-surjective case includes all nilpotents of type A and, more generally, all nilpotents for which it is known that W acts on H*S (Bx) for some torus S. Our result is deduced from a general theorem describing when a group action on the cohomology of the ûxed point set of a torus action on a space lifts to the full cohomology algebra of the space.


Author(s):  
Loring W. Tu

This chapter offers a rationale for a localization formula. It looks at the equivariant localization formula of Atiyah–Bott and Berline–Vergne. The equivariant localization formula of Atiyah–Bott and Berline–Vergne expresses, for a torus action, the integral of an equivariantly closed form over a compact oriented manifold as a finite sum over the fixed point set. The central idea is to express a closed form as an exact form away from finitely many points. Throughout his career, Raoul Bott exploited this idea to prove many different localization formulas. The chapter then considers circle actions with finitely many fixed points. It also studies the spherical blow-up.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Hiroaki Kanno

Abstract We review the problem of Bogomol’nyi–Prasad–Sommerfield (BPS) state counting described by the generalized quiver matrix model of Atiyah–Drinfield–Hitchin–Manin type. In four dimensions the generating function of the counting gives the Nekrasov partition function, and we obtain a generalization in higher dimensions. By the localization theorem, the partition function is given by the sum of contributions from the fixed points of the torus action, which are labeled by partitions, plane partitions and solid partitions. The measure or the Boltzmann weight of the path integral can take the form of the plethystic exponential. Remarkably, after integration the partition function or the vacuum expectation value is again expressed in plethystic form. We regard it as a characteristic property of the BPS state counting problem, which is closely related to the integrability.


Author(s):  
Victor W. Guillemin ◽  
Eva Miranda ◽  
Jonathan Weitsman

We prove a convexity theorem for the image of the moment map of a Hamiltonian torus action on a b m -symplectic manifold. This article is part of the theme issue ‘Finite dimensional integrable systems: new trends and methods’.


Author(s):  
Vestislav Apostolov ◽  
David M. J. Calderbank ◽  
Paul Gauduchon

AbstractWe present a local classification of conformally equivalent but oppositely oriented 4-dimensional Kähler metrics which are toric with respect to a common 2-torus action. In the generic case, these “ambitoric” structures have an intriguing local geometry depending on a quadratic polynomialWe use this description to classify 4-dimensional Einstein metrics which are hermitian with respect to both orientations, as well as a class of solutions to the Einstein–Maxwell equations including riemannian analogues of the Plebański–Demiański metrics. Our classification can be viewed as a riemannian analogue of a result in relativity due to R. Debever, N. Kamran, and R. McLenaghan, and is a natural extension of the classification of selfdual Einstein hermitian 4-manifolds, obtained independently by R. Bryant and the first and third authors.These Einstein metrics are precisely the ambitoric structures with vanishing Bach tensor, and thus have the property that the associated toric Kähler metrics are extremal (in the sense of E. Calabi). Our main results also classify the latter, providing new examples of explicit extremal Kähler metrics. For both the Einstein–Maxwell and the extremal ambitoric structures,


1997 ◽  
Vol 12 (32) ◽  
pp. 5775-5802 ◽  
Author(s):  
Masao Jinzenji

We calculate correlation functions of topological sigma model (A-model) on Calabi–Yau hypersurfaces in CPN-1 using torus action method. We also obtain path-integral representation of free energy of the theory coupled to gravity.


Sign in / Sign up

Export Citation Format

Share Document