THERMO PHYSICAL PROPERTIES OF TERNARY MIXTURES OF 1-HEXANOL/1- OCTANOL CONTAINING N-N-DIMETHYLFORMAMIDE AND TOLUENE AT 303.15 K

2021 ◽  
pp. 41-43
Author(s):  
T. Sumathi

In the present work, ultrasonic velocity (u), viscosity (η) and density (ρ) of ternary mixtures of 1-hexonal and 1-octanol with dimethylformamide in toluene at 303.15 K have been measured over the entire composition range. From the experimental data, acoustical parameters such as adiabatic compressibility (β), intermolecular free length (L ), free volume (V ), acoustic impedance (Z), excess adiabatic compressibility , excess free length , excess free f f E E (b ) (L )f volume and excess acoustic impedance have been computed. The variation of these properties with composition are E E (V ) (Z ) f discussed in terms of molecular interactions between unlike molecules of the mixtures.

2010 ◽  
Vol 7 (2) ◽  
pp. 465-472 ◽  
Author(s):  
S. Thirumaran ◽  
J. Earnest Jayakumar ◽  
B. Hubert Dhanasundaram

The ultrasonic study of velocity, density and viscosity has been measured for the mixtures ofn-alkanols, namely; 1-propoanol, 1-butanol and 1-pentanol in toluene withN-Ndimethyl acetamide (DMA) at 303K. The experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi) and acoustic impedance (Z). The excess values of the above parameters have also been evaluated and presented. From the present investigation, it is obvious that a weak molecular association was identified. Mixing of DMA withnalkanols causes dissociation of hydrogen bonded structures ofn- alkanols. Also, further addition of DMA with the mixture not only causes dissociation of hydrogen bonded structures ofn-alkanols but also a decrease in molecular association between toluene andn-alkanols is observed. The evaluated excess values predict weak molecular interactions existing between DMA-n-alkanols as well as toluene-n-alkanols.


2010 ◽  
Vol 7 (2) ◽  
pp. 353-356 ◽  
Author(s):  
S. Mullainathan ◽  
S. Nithiyanantham

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of 1,4-dioxane and acetone with water. From the experimental data, various acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), Rao’s constant (R), Wada’s constant (W) and specific acoustical impedance (Z) were calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


Author(s):  
N. Santhi ◽  
P.L. Sabarathinam ◽  
G. Alamelumangai ◽  
J. Madhumitha ◽  
M. Emayavaramban

Ultrasonic velocity, viscosity and density of alcohol[s] in n-hexane have been measured at various temperatures in the range of 303.15 - 318.15K. From the experimental data, the acoustical parameters such as molar volume, adiabatic compressibility, intermolecular free length and their excess values have been computed and presented as functions of compositions. The deviations from ideality of the acoustical parameters are explained on the basis of molecular interactions between the components of the mixtures. The variations of these parameters with composition of the mixture suggest the strength of interactions in these mixtures.


The Ultrasonic velocity(U), density(ρ), and viscosity(η) have been measured experimentally for the ternary liquid mixtures of 3(meta) methoxy phenol(MMP), 1 propanol and n hexane at various temperatures viz., 303 K, 308 K and 313 K at constant frequency of 2 MHz. for different concentrations ranges from 0.001M to 0.01M. The thermodynamic and acoustical parameters such as adiabatic compressibility(β), Rao constant(R), absorption coefficient (α/f2 ), internal pressure(πi), cohesive energy(CE), free volume(Vf), free length(Lf), acoustic impedence(z), available volume(Va), viscous relaxation time and Lenard Jones potential were calculated from the experimental data. The various excess properties including excess Ultrasonic velocity, excess acoustic impedence, excess free length, excess adiabatic compressibility, excess free volume and excess internal pressure were also computed. The variation of these excess parameters with respect to concentration and temperatures have been discussed in the light of molecular interaction. The molecular interactions were predicted based on the results obtained for ultrasonic velocities of different concentrations of the ternary mixtures at different temperatures.


Author(s):  
S.L. Dahire ◽  
Y.C. Morey ◽  
P.S. Agrawal

The present study reports densities (ρ), viscosities (η) and ultrasonic speeds (U) of pure dioxane (DOX), anisole (ANS), toluene (TOL) and ethylbenzene (ETB) and their binary liquid mixtures over the entire composition range at 293, 298, 303, 308 and 313 K. From the experimental data excess molar volume (VmE), excess intermolecular free length (LfE), excess adiabatic compressibility (βE) and excess acoustic impedance (ZE) have been computed. The excess values were correlated using Redlitch-Kister polynomial equation to obtain their coefficients and standard deviations (σ). With increase in temperature, the binary mixture of DOX+ANS shows larger deviations in βE, LfE and smaller deviations in ZE, VmE. These results suggest that ANS has strong molecular interactions with DOX than ETB and TOL.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Richa Saxena ◽  
SC Bhatt ◽  
Manish Uniyal ◽  
S C Nautiyal

Ultrasonic velocity, density, and viscosity of polyethylene glycol have been measured for the solution in water at concentration range of 0.3% to 1% at temperature 50oC. Ultrasonic velocity has been measured using ultrasonic interferometer at 1MHz frequency. By using the values of ultrasonic velocity, density, and viscosity, various acoustical parameters like adiabatic compressibility, acoustic impedance, intermolecular free length, and relaxation time have been calculated. The change in these acoustical parameters is explained in terms of solutesolvent interaction in a polymer solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
B. Nagarjun ◽  
A. V. Sarma ◽  
G. V. Rama Rao ◽  
C. Rambabu

Speeds of sound and density for binary mixtures of ethyl benzoate (EB) with N,N-dimethylformamide (NNDMF), N,N-dimethyl acetamide (NNDMAc), and N,N-dimethylaniline (NNDMA) were measured as a function of mole fraction at temperatures 303.15, 308.15 K, 313.15 K, and 318.15 K and atmospheric pressure. From the experimental data, adiabatic compressibility (βad), intermolecular free length (Lf), and molar volume (V) have been computed. The excess values of the above parameters were also evaluated and discussed in light of molecular interactions. Deviation in adiabatic compressibilities and excess intermolecular free length (LfE) are found to be negative over the molefraction of ethyl benzoate indicating the presence of strong interactions between the molecules. The negative excess molar volume VE values are attributed to strong dipole-dipole interactions between unlike molecules in the mixtures. The binary data of Δβad, VE, and LfE were correlated as a function of molefraction by using the Redlich-Kister equation.


2015 ◽  
Vol 1086 ◽  
pp. 107-110
Author(s):  
B. Rohini ◽  
Solomon Jeevaraj A. Kingson

Ultrasonic parameters of CuO: Diethylamine-Isopropaonol binary nanofluids at six different concentrations have been reported at three different temperatures like 298K, 308K and 318K. The acoustical parameters such as Ultrasonic sound velocity (v), Compressibility (β), Inter molecular free length (Lf), Acoustic impedance (Z) are calculated from experimental data. The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between particles and the binary liquid mixtures.KeywordsUltrasonic velocity, Compressibility, Acoustic impedance, Inter molecular free length, Nanofluids


2016 ◽  
Vol 4 (2) ◽  
pp. 15 ◽  
Author(s):  
M Vigneswari ◽  
S. S Saravanakumar ◽  
V. N Suresh ◽  
S Sankarrajan

Ultrasonic velocity, density, viscosity have been measured experimentally in the binary and ternary mixtures of Poly Vinyl Alcohol (PVA), water and borax with various concentration at 301.32 K. As the acoustical parameters like adiabatic compressibility, intermolecular free length, relaxation time, acoustic impedance, surface tension, Rao’s and Wada’s constant, ultrasonic attenuation and free volume would be more useful to predict and confirm the molecular interaction, these have been determined by using ultrasonic velocity, density and viscosity of the prepared solution. It has been identified that the molecular interactions in binary mixture were stronger than that of in ternary mixtures. And also there is a strong solute – solvent interaction occurring in both binary and ternary solutions. This may be due to the greater possibility of hydrogen bonding between PVA and Water molecules. When the borax is added, the molecular interaction is getting weaker due to greater affinity of borate ion towards the hydrogen in hydroxyl group of PVA.


Sign in / Sign up

Export Citation Format

Share Document