scholarly journals DYNAMIC VIRTUAL MACHINE MIGRATION USING RATIO-BASED METHOD

2020 ◽  
pp. 1-4
Author(s):  
Haresh Damjibhai Khachariya ◽  
Jayesh N. Zalavadia

Cloud computing provides various services over the internet and its increasing day by day.Given the growing demands of cloud services, it requires a lot of computing resources to meet customer needs. So, the addition of energy consumption through cloud computing resources will increase day by day and become a key obstacle in the cloud environment.In cloud computing,data centers consume more energy and additionally release carbon dioxide into the atmosphere. To reduce energy consumption through the cloud datacenter, energy-efficient resource management is required. In this paper a specific technique for performing virtual machines through datacenter is given. Our goal is to reduce power consumption on the datacenter by reducing the host running in the cloud datacenter. To reduce power consumption, schedule the incoming task such a way that all the resources like ram,cpu(mips) and bandwidth utilize in equal weightage.Then after if any host is over utilized then migrate one or more vm from that host to another host as well as if any host is underutilize then migrate running vm of that host and switch off the under loaded host to save energy.

Author(s):  
Noah Sabry ◽  
Paul Krause

Cloud computing provides the opportunity to migrate virtual machines to “follow-the-green” data centres. That is, to migrate virtual machines between green data centres on the basis of clean energy availability, to mitigate the environmental impact of carbon footprint emissions and energy consumption. The virtual machine migration problem can be modelled to maximize the utility of computing resources or minimizing the cost of using computing resources. However, this would ignore the network energy consumption and its impact on the overall CO2 emissions. Unless this is taken into account the extra data traffic due to migration of data could then cause an increase in brown energy consumption and eventually lead to an unintended increase in carbon footprint emissions. Energy consumption is a key aspect in deploying distributed service in cloud networks within decentralized service delivery architectures. In this paper, the authors address an optimization view of the problem of locating a set of cloud services on a set of sites green data centres managed by a service provider or hybrid cloud computing brokerage. The authors’ goal is to minimize the overall network energy consumption and carbon footprint emissions for accessing the cloud services for any pair of data centres i and j. The authors propose an optimization migration model based on the development of integer linear programming (ILP) models, to identify the leverage of green energy sources with data centres and the energy consumption of migrating VMs.


Now a day Energy Consumption is one of the most promising fields amongst several computing services of cloud computing. A maximum amount of Power resources are absorbed by the data centre because of huge amount of data processing which is increased abnormally. So it’s the time to think about the energy consumption in cloud environment. Existing Energy Consumption systems are limited in terms of virtualization because improper virtualization leads to loads imbalance and excessive power consumption and inefficiency in terms of computational power. Billing[1,2 ] is another exciting feature that is closely related to energy consumption, because higher or lesser billing depends on energy consumption somehow-as we know that cloud providers allow cloud users to access resources as pay-per-use, so these resources need to be optimally selected to process the user request to maximize user satisfaction in the distributed virtualized environment. There may be an inequity between the actual power consumption by the users and the provided billing records by the providers, So any false accusation that may claimed by each other to get illegal compensations. To avoid such accusation, we propose a work to consolidate the VMs using the Power Management as a Service (PMaaS) model in such a way, to reduce power consumption by maximum resource utilization without live-migration of the virtual machines by using the concept of Virtual Servers. The proposed PMaaS model uses a new “Auto-fit VM placement algorithm”, which computes tasks resource demands, models a Virtual Machine that fits those demands, and places the Virtual Machines on a Virtual server made by the collective resources (CPU, Memory, Storage and Bandwidth) from the respective schedulers directly connected to the actual physical servers and that has the minimum remaining resources which is large enough to accommodate such a Virtual Machine.


2014 ◽  
Vol 926-930 ◽  
pp. 2084-2087
Author(s):  
Chun Ling An ◽  
Chun Lin Li ◽  
You Long Luo ◽  
Su Jie He

According to the trigger strategy of virtual machine dynamic migration based on features closed in the process of dynamic migration of virtual machines in the cloud computing, this paper puts forward a double threshold trigger strategy using timing prediction based on historical data (DTS Algorithms). Then simulation on the CloudSim platform, and analyze the results of the experiment. Experimental results showed that in the system virtual machine migration using DTS algorithm can reduce the number of migration and the energy consumption during the migration process.


Author(s):  
N. Chandrakala ◽  
B. Thirumala Rao

Cloud services help individuals and organization to use data that are managed by third parties or another person at remote locations. With the increase in the development of cloud computing environment, the security has become the major concern that has been raised more consistently in order to move data and applications to the cloud as individuals do not trust the third party cloud computing providers with their private and most sensitive data and information. This paper presents, the migration of virtual machine to improve the security in cloud computing. Virtual machine (VM) is an emulation of a particular computer system. In cloud computing, virtual machine migration is a useful tool for migrating operating system instances across multiple physical machines. It is used to load balancing, fault management, low-level system maintenance and reduce energy consumption. Virtual machine (VM) migration is a powerful management technique that gives data center operators the ability to adapt the placement of VMs in order to better satisfy performance objectives, improve resource utilization and communication locality, achieve fault tolerance, reduce energy consumption, and facilitate system maintenance activities. In the migration based security approach, proposed the placement of VMs can make enormous difference in terms of security levels. On the bases of survivability analysis of VMs and Discrete Time Markov Chain (DTMC) analysis, we design an algorithm that generates a secure placement arrangement that the guest VMs can moves before succeeds the attack.


Author(s):  
Neenu Juneja ◽  
Chamkaur Singh ◽  
Krishan Tuli

Cloud Computing has the facility to transform a large part of information technology into services in which computer resources are virtualized and made available as a utility service. From here comes the importance of scheduling virtual resources to get the maximum utilization of physical resources. The growth in server’s power consumption is increased continuously; and many researchers proposed, if this pattern repeats continuously, then the power consumption cost of a server over its lifespan would be higher than its hardware prices. The power consumption troubles more for clusters, grids, and clouds, which encompass numerous thousand heterogeneous servers. Continuous efforts have been done to reduce the electricity consumption of these massive-scale infrastructures. To identify the challenges and required future enhancements in the field of efficient energy consumption in Cloud Computing, it is necessary to synthesize and categorize the research and development done so far. In this paper, the authors prepare taxonomy of huge energy consumption problems and its related solutions. The authors cover all aspects of energy consumption by Cloud Datacenters and analyze many more research papers to find out the better solution for efficient energy consumption. Keywords: Cloud computing, Collocated virtual machines, Live migration, Load balancing, Resource scheduling


In a cloud data centre the consolidation of the virtual machines (VMs) assist to optimize the resources need and diminish the energy consumption. In the consolidation of the VMs the VM placement acts an important role. By considering optimized energy consumption the researchers have developed various algorithms for VM placement. However, these algorithms be deficient in the exploitation mechanism use resourcefully. This paper attend to VM placement issues by offering metaheuristic algorithms that is, the Modified Salp Swarm Algorithm (MSSA) presenting the comparative analysis relating to energy optimization. The comparison are made adjacent to the existing particle swarm optimization (PSO), and salp swarm algorithm (SSA) and the energy consumption results of all the contributing algorithms confirm that the proposed MSSA is more efficient than the other algorithms. The simulation result demonstrates that MSSA outperforms effectively than other presented approaches in optimal VM placement in cloud computing environment with maximal resource use, minimal energy consumption, minimum SLA violation and reduced migration cost


The platform for cloud computing offers virtualization and a dynamic pool of resources to the consumers of the cloud. The acceptance and demand of cloud is growing on a regular basis. Cloud computing offers utility-based consumer services across the globe on a pay as you go strategy. Live Virtual Machine (VM) migration sets the basic foundation for cloud management. It hasakey role in reducing operating expenditure and revising quality of service without disruption of cloud services running in the VM. A lot of research has been done to yield better performance in live VM migration and has seen noteworthy development and accomplishment. However, some crucial problems require results and enhancement. With the growth of new cloud computing models like Mobile Edge Computing, certain problems related to optimization need to be addressed. The primary aim of this research work is to emphasize on optimum functioning of live migration. A migration algorithm to consolidate the computational resources, storage resources and network resources dynamically with a two-stage heuristic hybrid evolutionary algorithm is discussed. The resources are consolidated to cut down the energy and cost utilization depending upon the evolutionary Particle Swarm Optimization and the Ant Colony Optimization algorithms. These algorithms can rapidly identify the migrating virtual machines and locate their positions respectively.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


Sign in / Sign up

Export Citation Format

Share Document