scholarly journals Energy Management Techniques for Cloud Based Environment

Author(s):  
Neenu Juneja ◽  
Chamkaur Singh ◽  
Krishan Tuli

Cloud Computing has the facility to transform a large part of information technology into services in which computer resources are virtualized and made available as a utility service. From here comes the importance of scheduling virtual resources to get the maximum utilization of physical resources. The growth in server’s power consumption is increased continuously; and many researchers proposed, if this pattern repeats continuously, then the power consumption cost of a server over its lifespan would be higher than its hardware prices. The power consumption troubles more for clusters, grids, and clouds, which encompass numerous thousand heterogeneous servers. Continuous efforts have been done to reduce the electricity consumption of these massive-scale infrastructures. To identify the challenges and required future enhancements in the field of efficient energy consumption in Cloud Computing, it is necessary to synthesize and categorize the research and development done so far. In this paper, the authors prepare taxonomy of huge energy consumption problems and its related solutions. The authors cover all aspects of energy consumption by Cloud Datacenters and analyze many more research papers to find out the better solution for efficient energy consumption. Keywords: Cloud computing, Collocated virtual machines, Live migration, Load balancing, Resource scheduling

2020 ◽  
pp. 1-4
Author(s):  
Haresh Damjibhai Khachariya ◽  
Jayesh N. Zalavadia

Cloud computing provides various services over the internet and its increasing day by day.Given the growing demands of cloud services, it requires a lot of computing resources to meet customer needs. So, the addition of energy consumption through cloud computing resources will increase day by day and become a key obstacle in the cloud environment.In cloud computing,data centers consume more energy and additionally release carbon dioxide into the atmosphere. To reduce energy consumption through the cloud datacenter, energy-efficient resource management is required. In this paper a specific technique for performing virtual machines through datacenter is given. Our goal is to reduce power consumption on the datacenter by reducing the host running in the cloud datacenter. To reduce power consumption, schedule the incoming task such a way that all the resources like ram,cpu(mips) and bandwidth utilize in equal weightage.Then after if any host is over utilized then migrate one or more vm from that host to another host as well as if any host is underutilize then migrate running vm of that host and switch off the under loaded host to save energy.


Now a day Energy Consumption is one of the most promising fields amongst several computing services of cloud computing. A maximum amount of Power resources are absorbed by the data centre because of huge amount of data processing which is increased abnormally. So it’s the time to think about the energy consumption in cloud environment. Existing Energy Consumption systems are limited in terms of virtualization because improper virtualization leads to loads imbalance and excessive power consumption and inefficiency in terms of computational power. Billing[1,2 ] is another exciting feature that is closely related to energy consumption, because higher or lesser billing depends on energy consumption somehow-as we know that cloud providers allow cloud users to access resources as pay-per-use, so these resources need to be optimally selected to process the user request to maximize user satisfaction in the distributed virtualized environment. There may be an inequity between the actual power consumption by the users and the provided billing records by the providers, So any false accusation that may claimed by each other to get illegal compensations. To avoid such accusation, we propose a work to consolidate the VMs using the Power Management as a Service (PMaaS) model in such a way, to reduce power consumption by maximum resource utilization without live-migration of the virtual machines by using the concept of Virtual Servers. The proposed PMaaS model uses a new “Auto-fit VM placement algorithm”, which computes tasks resource demands, models a Virtual Machine that fits those demands, and places the Virtual Machines on a Virtual server made by the collective resources (CPU, Memory, Storage and Bandwidth) from the respective schedulers directly connected to the actual physical servers and that has the minimum remaining resources which is large enough to accommodate such a Virtual Machine.


Computers ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 46 ◽  
Author(s):  
Said BEN ALLA ◽  
Hicham BEN ALLA ◽  
Abdellah TOUHAFI ◽  
Abdellah EZZATI

Nowadays, Cloud Computing (CC) has emerged as a new paradigm for hosting and delivering services over the Internet. However, the wider deployment of Cloud and the rapid increase in the capacity, as well as the size of data centers, induces a tremendous rise in electricity consumption, escalating data center ownership costs and increasing carbon footprints. This expanding scale of data centers has made energy consumption an imperative issue. Besides, users’ requirements regarding execution time, deadline, QoS have become more sophisticated and demanding. These requirements often conflict with the objectives of cloud providers, especially in a high-stress environment in which the tasks have very critical deadlines. To address these issues, this paper proposes an efficient Energy-Aware Tasks Scheduling with Deadline-constrained in Cloud Computing (EATSD). The main goal of the proposed solution is to reduce the energy consumption of the cloud resources, consider different users’ priorities and optimize the makespan under the deadlines constraints. Further, the proposed algorithm has been simulated using the CloudSim simulator. The experimental results validate that the proposed approach can effectively achieve good performance by minimizing the makespan, reducing energy consumption and improving resource utilization while meeting deadline constraints.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


2018 ◽  
Vol 6 (5) ◽  
pp. 340-345
Author(s):  
Rajat Pugaliya ◽  
Madhu B R

Cloud Computing is an emerging field in the IT industry. Cloud computing provides computing services over the Internet. Cloud Computing demand increasing drastically, which has enforced cloud service provider to ensure proper resource utilization with less cost and less energy consumption. In recent time various consolidation problems found in cloud computing like the task, VM, and server consolidation. These consolidation problems become challenging for resource utilization in cloud computing. We found in the literature review that there is a high level of coupling in resource utilization, cost, and energy consumption. The main challenge for cloud service provider is to maximize the resource utilization, reduce the cost and minimize the energy consumption. The dynamic task consolidation of virtual machines can be a way to solve the problem. This paper presents the comparative study of various task consolidation algorithms.


2021 ◽  
Author(s):  
Marta Chinnici ◽  
Asif Iqbal ◽  
ah lian kor ◽  
colin pattinson ◽  
eric rondeau

Abstract Cloud computing has seen rapid growth and environments are now providing multiple physical servers with several virtual machines running on those servers. Networks have grown larger and have become more powerful in recent years. A vital problem related to this advancement is that it has become increasingly complex to manage networks. SNMP is one standard which is applied as a solution to this management of networks problem. This work utilizes SNMP to explore the capabilities of SNMP protocol and its features for monitoring, control and automation of virtual machines and hypervisors. For this target, a stage-wise solution has been formed that obtains results of experiments from the first stage uses SNMPv3 and feed to the second stage for further processing and advancement. The target of the controlling experiments is to explore the extent of SNMP capability in the control of virtual machines running in a hypervisor, also in terms of energy efficiency. The core contribution based on real experiments is conducted to provide empirical evidence for the relation between power consumption and virtual machines.


2021 ◽  
Vol 12 (3) ◽  
pp. 16-38
Author(s):  
Pushpa R. ◽  
M. Siddappa

In this paper, VM replacement strategy is developed using the optimization algorithm, namely artificial bee chicken swarm optimization (ABCSO), in cloud computing model. The ABCSO algorithm is the integration of the artificial bee colony (ABC) in chicken swarm optimization (CSO). This method employed VM placement based on the requirement of the VM for the completion of the particular task using the service provider. Initially, the cloud system is designed, and the proposed ABCSO-based VM placement approach is employed for handling the factors, such as load, CPU usage, memory, and power by moving the virtual machines optimally. The best VM migration strategy is determined using the fitness function by considering the factors, like migration cost, load, and power consumption. The proposed ABCSO method achieved a minimal load of 0.1688, minimal power consumption of 0.0419, and minimal migration cost of 0.0567, respectively.


2020 ◽  
Vol 10 (7) ◽  
pp. 2323
Author(s):  
T. Renugadevi ◽  
K. Geetha ◽  
K. Muthukumar ◽  
Zong Woo Geem

Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.


In recent years the usage of virtualized technology is increasing rapidly. This makes enhancement in the performance efficiency leads to the need of the virtualization machine. This study is developed to enhance the performance level of the docker containers in cloud computing. The work presented in the paper considers the major parameters like availability, load, location, and energy of virtual machines to increase the system performance. The major objective of the work is to analyze and distribute the load of machines equally. The ABC (Artificial or Counterfeit Bee Colony) algorithm is used. For this purpose the ABC algorithm replaces the traditional ACO approach because of its various features such as simplicity, flexibility, and robustness. The output of the proposed work is evaluated in the terms of energy consumption and job completion. The observed values corresponding to these factors prove the proficiency of the suggested ABC algorithm based technique over traditional ACO algorithm based technique.


Sign in / Sign up

Export Citation Format

Share Document