scholarly journals Investigation of Flexible Pavement Failure along Ede – Akoda Road, Osun State, Southwestern Nigeria

Author(s):  
M.A Tijani ◽  
S.O.A Olawale

Ede to Akoda is a trunk B-road built over 30 years ago. It has been in despicable condition leading to fatal accidents and loss of life and properties that impacted negatively on the community. This study investigated the flexible pavement failure along the road in order to ascertain the possible causes of its failure. The methodology adopted covered reconnaissance survey, assessment of the physical condition of the road and soil investigation of subgrade. The result of reconnaissance survey revealed that the surface wearing course has degraded extensively. The physical inspections showed that considerable segment of the drainage facilities has collapsed or totally blocked allowing extensive ponding of rain water on the road surface. The pot holes were deep and widespread in most places and the road is near total collapse. The result of soil investigation revealed that natural moisture content, specific gravity, liquid limit, plastic limit, plastic index, maximum dry density and optimum moisture content were within the specifications of the Federal Ministry of Works and Housing limits (FMWH). However, the California bearing ratio values were less than minimum 10% stated in the specifications, this suggests the nature of subgrade soil as a possible cause of failure of road pavements along Ede-Akoda Road, Nigeria. It is recommended that further research be conducted on other structures of the flexible pavement to better ascertain the causes of the studied road failure.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ubido Oyem Emmanuel ◽  
Igwe Ogbonnaya ◽  
Ukah Bernadette Uche

AbstractInvestigation into the cause of road failure has been carried out along a 60 km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12 to 61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1–52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2–35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17–43.9%, maximum dry density ranges from 1.51–1.74 g /cm3, specific gravity ranges from 2.52–2.64 and CBR between 3 and 12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20–138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m − 120 m along the profile to a depth of 15 m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2021 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Investigation into the cause of road failure has been carried out along a 60km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12-61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17 – 43.9%, maximum dry density ranges from 1.51 -1.74g /cm3, specific gravity ranges from 2.52-2.64 and CBR between 3-12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20-138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20m – 240 m along the profile to a depth of 7.60m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m –120 m along the profile to a depth of 15m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2020 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Investigation into the cause of road failure has been carried out along a 60km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12-61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17 – 43.9%, maximum dry density ranges from 1.51 -1.74g /cm3, specific gravity ranges from 2.52-2.64 and CBR between 3-12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20-138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20m – 240 m along the profile to a depth of 7.60m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m –120 m along the profile to a depth of 15m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2020 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Investigation into the cause of road failure has been carried out along a 60km Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12-61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17 – 43.9%, maximum dry density ranges from 1.51 -1.74g /cm3, specific gravity ranges from 2.52-2.64 and CBR between 3-12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20-138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20m – 240 m along the profile to a depth of 7.60m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m –120 m along the profile to a depth of 15m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Biao Zeng ◽  
Lin-feng Wang ◽  
Yun Tian ◽  
Tao-rui Zeng ◽  
Bing Li

Red clay cannot be used as embankment filler directly due to its water-sensitive property. Gravel is usually added into red clay to enhance its performance in engineering practice. In order to investigate the influence of mixtures of red clay and gravel on the road performance, gravitational compaction experiment of red clay and vibratory compaction experiment of mixtures of red clay and gravel were conducted, respectively. The results indicate that compaction curves of red clay have double peak; the second peak is the real maximum dry density, and its corresponding moisture content is the optimal moisture content. The dry density of mixtures of red clay and gravel is influenced by the content of gravel, vibration frequency, and vibration time. The optimal content of gravel is 30%, the best vibration frequency is 45 Hz, and the optimal vibration time is 5 minutes for the mixtures of red clay and gravel in this study. The effectiveness of optimal content of gravel and optimum vibration parameters was confirmed by a CBR test. According to the compaction experiment results and actual situation in the field, a suitable construction method of subgrade using the mixtures of red clay and gravel was put forward. The feasibility of this method was also confirmed by postconstruction deformation data of the field test embankment.


2020 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Road Failure in Nigeria has been a monumental disaster that has resulted to loss of lives and damage of vehicles which has also in turn increased the travel time of motorist plying on the these roads. In order to unravel the cause of this disaster geotechnical, geochemical, mineralogical and geophysical tests were conducted to evaluate the cause of failure along Sagamu-Papalanto Highway southwestern Nigeria. The laboratory tests result conducted shows that the percentage amount of fines ranges from 12-61.3%,natural moisture content ranges from 6.8 to 19.7%, the liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, the plasticity index ranges from 5.2 to 24.6%,free swell in the range from 5.17 – 43.9%,maximum dry density from1.51 -1.74g /cm 3 , the specific gravity ranges from 2.52-2.64 and the CBR between 3-12%. The Cone Penetrometer Test (CPT) has a resistance value in the range of 20-138 kgf/cm 2 .There is the predominance of kaolinite as the major clay minerals and the main oxides in the study area shows SiO 2 , Al 2 O 3 , Fe 2 O 3 , K 2 O,Na 2 O, MgO and CaO.2D Electrical Resistivity Wenner Array Method was employed in the investigation. Four profiles covering a distance of 250 meters for profiles 1, 2, and 3 and 500meters for profile 4 each were established parallel and perpendicular to the road pavement along the sections of the road. Data were gather along the four profiles using ABEM Terra meter SAS 1000. The recorded field data were filtered and inverted using 2-D modelling inversion algorithm with the aid RES2DINV Software . The results revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between distances of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between distances of 80 m –120 m along the profile to a depth of 15m from the surface of the profile the topsoil along the profile. The low resistivity values and low shear strength obtained from the profiles shows the study areas comprises of incompetent materials which has the propensity to retain water and eventually results to swelling and collapse under imposed load with subsequent failure as the resultant effect. Sections of the road with sandy and clayey materials should be scooped out from the subsurface to a depth of 3 m – 5 m from the top soil of the road and put back with competent fill materials.


2019 ◽  
Vol 3 (2) ◽  
pp. 1-7
Author(s):  
Syahdi Syahdi ◽  
Muhammad Suhaimi

Tanah merupakan salah satu dari sekian banyak material yang bervariasi (heterogen) antara satu lokasi dengan lokasi yang lain., maka dalam penelitian ini melakukan penambahan material pasir putih yang kemudian dicampurkan dengan tanah asli yang berasal dari desa Bangkuang Kecapamatan Karau Kuala Kabupaten Barito selatan. Kegiatan penelitian dilakukan di laboratorium Geoteknik dan Transportasi Politeknik Negeri Banjarmasin meliputi beberapa metode pungujian dilakukan sesuai dengan standar penelitian yaitu: SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008,SNI 03-1743-2008 SNI 03-1738-2011, dan SNI 2828:2011.  Hasil penelitian, dengan penambahan pasir putih sangat berpengaruh terhadap perbaikan sifat – sifat tanah yang akan digunakan untuk bahan stabilisasi subgredre,   maka didapat nilai sifat-sifat tanah diberi bahan pasir putih (0%) meliputi; kadar air (W) 23,87%, berat jenis (Gs) 2,59, batas cair (LL) 33,9%, batas plastis (PL) 20,11%, plastisitas indeks (PI) 13,79%, kadar air optimum (OMC) 18,6%, kepadatan kering maksimum (dMax) 1,61 Gr/Cm3 dan CBR desain 5%. Nilai sifat-sifat tanah diberi bahan tambah pasir putih. Nilai sifat-sifat tanah diberi bahan tambah pasir putih (15%) meliputi; berat jenis gabungan (Gs) 2,62, batas cair (LL) 29,6%, batas plastis (PL) 19,52%, plastisitas indeks (PI) 10,08%, kadar air optimum (Omc) 81,5%, kepadatan kering maksimum (dMax)) 1,54 Gr/Cm3 dan CBR desain 6,1%, berat isi kering (d) 1,538 gr/cm³. Abstract Land is one of the many varied material (heterogeneous) between one site and another location., then in this research performs addition material of white sand is then blended with the native soil that comes from the village of Karau Kuala Kecapamatan District Bangkuang Barito South. Research activities carried out in the laboratory of Geotechnical and transportation State Polytechnic Banjarmasin includes several methods of pungujian conducted in accordance with the standards of research, namely: in accordance with the SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008, SNI 03-1743-2008, SNI 03-1738-2011, and SNI 2828:2011. Results of the study, with the addition of white sand is very influential towards the improvement of the nature – nature of the land to be used for subgredre stabilization materials, then obtained the value soil properties are given materials white sand (0%) include; moisture content (W) 23.87%, heavy types (Gs) 2.59, liquid limit (LL) 33.9%, limits plastis (PL) 20.11%, plasticity index (PI) 13.79%, optimum moisture content (OMC) 18.6%, maximum dry density (/dMax) 1.61 Gr/Cm3 and CBR design 5%. The value soil properties are given the added ingredient of white sand. The value soil properties are given the added ingredient of white sand (15%) include; the weight of the combined type (Gs) 2.62, liquid limit (LL) 29.6%, limits plastis (PL) 19.52%, plasticity index (PI) 10.08%, optimum moisture content (Omc) 81.5%, maximum dry density (/dMax)) 1.54 Gr/Cm3 and CBR design 6.1%, weight dry (/d) 1.538 gr/cm ³.


Author(s):  
Simeon O Odunfa ◽  
Adebayo O. Owolabi ◽  
Peter O. Aiyedun ◽  
Obanisola M. Sadiq

Pavement failure has contributed immensely to loss of lives, disruption to normal daily activities and increase amount of money being spent on maintenance annually. One of the causes is associated with inadequate investigations on subgrade materials. This study aimed at examining the geotechnical parameters as factors of pavement failure along Lagos–Ibadan Expressway. Samples were collected at the failed and stable portions on some selected road segments and subjected to laboratory tests including Natural Moisture Content (NMC), Linear Shrinkage(LS), particle size distribution and California Bearing Ratio(CBR). The NMC along the failed sections was on the high side (ranged from 13.11% to 26.89%) compared with the stable sections (ranged from 11.11% to 16.40%). Most of the tested soils have percentage passing 0.075mm sieve more than 35% maximum required by the Federal Ministry of Works and Housing for subgrade materials. The maximum dry density(MDD) for the samples at failed and stable sections ranged from 1550 kg/m3 to 1860 kg/m3; 1650 kg/m3 to 1980 kg/m3 respectively while the Optimum Moisture Content(OMC) ranged from 8.30% to 20.30%. The soaked CBR values ranged from 2% to 17% while the unsoaked values ranged from 4% to 25%. The increase in NMC along the failed portions could be as a result of high water table along these sections. Some of the materials at failed locations had values of LS > 8% which suggests high susceptibility to shrinkage and swelling which results in differential settlement and contributed to pavement failure along these sections of the road. Keywords: Geotechnical, Pavement failures, subsurface investigations, Expressway, subgrade materials.


Author(s):  
Shubham Moudgil ◽  
Rajesh Pathak

Harnessing of industrial waste for improvement of soils is economical and efficient. It helps in enhancing the soil properties and overcoming the disposal problem. Therefore, it is essential to understand the properties of these wastes in order to understand their performance level. In this study, waste marble dust was added to stabilize the soil which was collected from Rajpura Punjab. The various index properties liquid limit, plastic limit was studied by adding Marble dust 10%,15%,20% and 25% by weight of soil. Similarly, California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) was calculated at maximum dry density obtained from compaction test. It was observed that based on tests that 20% of waste marble dust was optimum for strengthening of the parent soil. Resilient Modulus was calculated afterwards for the subgrade using models specified by Heukelom and Klomp, Thompson and Robnett, Transport and Road Research Laboratory, Erdem Coleri. Based on the results obtained, pavement thickness was determined for designing flexible pavement section as per IRC 37-2012 using IITPAVE. Design was done considering the horizontal tensile strain and vertical compressive strain at the bottom of bituminous base and at top of subgrade, responsible for fatigue and rutting of pavements.


1997 ◽  
Author(s):  
◽  
Anthony James Allinsin

The strength and durability of any soil structure is dependent on the quality of the compaction of the soil. This quality is measured by employing a standard compaction test, which provides a standard with which density may be compared, called the maximum dry density, and the moisture content of the soil at which this is achieved, called the optimum moisture content. As a matter of routine during quality control, the particle size distribution, plasticity index and liquid limit of the soil are determined at the same time as its maximum dry density and optimum moisture content.


Sign in / Sign up

Export Citation Format

Share Document