scholarly journals High-Order Analytical Formulation of Soliton Self-Frequency Shift

Author(s):  
Martin Rochette

<div>We derive an analytical formulation of the Raman-induced frequency shift experienced by a fundamental soliton. By including propagation losses, self-steepening, and dispersion slope, the resulting formulation is a high-order (HO) extension of the well-known Gordon's formula for soliton self-frequency shift (SSFS). The HO-SSFS formula closely agrees with numerical results of the generalized nonlinear Schrödinger equation, but without the computational complexity and required computation time. The HO-SSFS formula is a useful tool for the design and validation of wavelength conversion systems and supercontinuum generation systems.</div>

2020 ◽  
Author(s):  
Martin Rochette

<div>We derive an analytical formulation of the Raman-induced frequency shift experienced by a fundamental soliton. By including propagation losses, self-steepening, and dispersion slope, the resulting formulation is a high-order (HO) extension of the well-known Gordon's formula for soliton self-frequency shift (SSFS). The HO-SSFS formula closely agrees with numerical results of the generalized nonlinear Schrödinger equation, but without the computational complexity and required computation time. The HO-SSFS formula is a useful tool for the design and validation of wavelength conversion systems and supercontinuum generation systems.</div>


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 966
Author(s):  
Fukang Yin ◽  
Jianping Wu ◽  
Junqiang Song ◽  
Jinhui Yang

In this paper, we proposed a high accurate and stable Legendre transform algorithm, which can reduce the potential instability for a very high order at a very small increase in the computational time. The error analysis of interpolative decomposition for Legendre transform is presented. By employing block partitioning of the Legendre-Vandermonde matrix and butterfly algorithm, a new Legendre transform algorithm with computational complexity O(Nlog2N /loglogN) in theory and O(Nlog3N) in practical application is obtained. Numerical results are provided to demonstrate the efficiency and numerical stability of the new algorithm.


2021 ◽  
pp. 2000576
Author(s):  
Fuyong Yue ◽  
A. Aadhi ◽  
Riccardo Piccoli ◽  
Vincenzo Aglieri ◽  
Roberto Macaluso ◽  
...  

2021 ◽  
Author(s):  
Maha Mdini ◽  
Takemasa Miyoshi ◽  
Shigenori Otsuka

&lt;p&gt;In the era of modern science, scientists have developed numerical models to predict and understand the weather and ocean phenomena based on fluid dynamics. While these models have shown high accuracy at kilometer scales, they are operated with massive computer resources because of their computational complexity.&amp;#160; In recent years, new approaches to solve these models based on machine learning have been put forward. The results suggested that it be possible to reduce the computational complexity by Neural Networks (NNs) instead of classical numerical simulations. In this project, we aim to shed light upon di&amp;#64256;erent ways to accelerating physical models using NNs. We test two approaches: Data-Driven Statistical Model (DDSM) and Hybrid Physical-Statistical Model (HPSM) and compare their performance to the classical Process-Driven Physical Model (PDPM). DDSM emulates the physical model by a NN. The HPSM, also known as super-resolution, uses a low-resolution version of the physical model and maps its outputs to the original high-resolution domain via a NN. To evaluate these two methods, we measured their accuracy and their computation time. Our results of idealized experiments with a quasi-geostrophic model [SO3] show that HPSM reduces the computation time by a factor of 3 and it is capable to predict the output of the physical model at high accuracy up to 9.25 days. The DDSM, however, reduces the computation time by a factor of 4 and can predict the physical model output with an acceptable accuracy only within 2 days. These &amp;#64257;rst results are promising and imply the possibility of bringing complex physical models into real time systems with lower-cost computer resources in the future.&lt;/p&gt;


2020 ◽  
Vol 12 (03) ◽  
pp. 2050027 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to introduce a new memory-dependent derivative theory to contribute for increasing development of technological and industrial applications of anisotropic smart materials. This theory is called three-temperature anisotropic generalized micropolar piezothermoelasticity. The governing equations of the proposed theory are very difficult to solve analytically because of material anisotropy and its nonlinear properties. Therefore, we propose a new boundary element formulation for solving such equations. The efficiency of our proposed technique has been developed by using an adaptive smoothing and prolongation algebraic multigrid (aSP-AMG) preconditioner to reduce the computation time. The numerical results are presented highlighting the effects of the kernel function and time delay on the temperature and displacements. The numerical results also verify the validity and accuracy of the proposed methodology. It can be concluded from the numerical results of our current complex and general study that some well-known uncoupled, coupled and generalized theories of anisotropic micropolar piezothermoelasticity can be connected with the three-temperature radiative heat conduction to characterize the deformation of anisotropicmicropolar piezothermoelasticstructures in the context of memory-dependent derivative.


2019 ◽  
Vol 219 (1) ◽  
pp. 39-65
Author(s):  
Octavio Castillo-Reyes ◽  
Josep de la Puente ◽  
Luis Emilio García-Castillo ◽  
José María Cela

SUMMARY We present a parallel and high-order Nédélec finite element solution for the marine controlled-source electromagnetic (CSEM) forward problem in 3-D media with isotropic conductivity. Our parallel Python code is implemented on unstructured tetrahedral meshes, which support multiple-scale structures and bathymetry for general marine 3-D CSEM modelling applications. Based on a primary/secondary field approach, we solve the diffusive form of Maxwell’s equations in the low-frequency domain. We investigate the accuracy and performance advantages of our new high-order algorithm against a low-order implementation proposed in our previous work. The numerical precision of our high-order method has been successfully verified by comparisons against previously published results that are relevant in terms of scale and geological properties. A convergence study confirms that high-order polynomials offer a better trade-off between accuracy and computation time. However, the optimum choice of the polynomial order depends on both the input model and the required accuracy as revealed by our tests. Also, we extend our adaptive-meshing strategy to high-order tetrahedral elements. Using adapted meshes to both physical parameters and high-order schemes, we are able to achieve a significant reduction in computational cost without sacrificing accuracy in the modelling. Furthermore, we demonstrate the excellent performance and quasi-linear scaling of our implementation in a state-of-the-art high-performance computing architecture.


Sign in / Sign up

Export Citation Format

Share Document