scholarly journals Security-Aware Data Offloading and Resource Allocation For MEC Systems: A Deep Reinforcement Learning

Author(s):  
Ibrahim Elgendy ◽  
Ammar Muthanna ◽  
Mohammad Hammoudeh ◽  
Hadil Ahmed Shaiba ◽  
Devrim Unal ◽  
...  

The Internet of Things (IoT) is permeating our daily lives where it can provide data collection tools and important measurement to inform our decisions. In addition, they are continually generating massive amounts of data and exchanging essential messages over networks for further analysis. The promise of low communication latency, security enhancement and the efficient utilization of bandwidth leads to the new shift change from Mobile Cloud Computing (MCC) towards Mobile Edge Computing (MEC). In this study, we propose an advanced deep reinforcement resource allocation and securityaware data offloading model that considers the computation and radio resources of industrial IoT devices to guarantee that shared resources between multiple users are utilized in an efficient way. This model is formulated as an optimization problem with the goal of decreasing the consumption of energy and computation delay. This type of problem is NP-hard, due to the curseof-dimensionality challenge, thus, a deep learning optimization approach is presented to find an optimal solution. Additionally, an AES-based cryptographic approach is implemented as a security layer to satisfy data security requirements. Experimental evaluation results show that the proposed model can reduce offloading overhead by up to 13.2% and 64.7% in comparison with full offloading and local execution while scaling well for large-scale devices.

2021 ◽  
Author(s):  
Ibrahim Elgendy ◽  
Ammar Muthanna ◽  
Mohammad Hammoudeh ◽  
Hadil Ahmed Shaiba ◽  
Devrim Unal ◽  
...  

The Internet of Things (IoT) is permeating our daily lives where it can provide data collection tools and important measurement to inform our decisions. In addition, they are continually generating massive amounts of data and exchanging essential messages over networks for further analysis. The promise of low communication latency, security enhancement and the efficient utilization of bandwidth leads to the new shift change from Mobile Cloud Computing (MCC) towards Mobile Edge Computing (MEC). In this study, we propose an advanced deep reinforcement resource allocation and securityaware data offloading model that considers the computation and radio resources of industrial IoT devices to guarantee that shared resources between multiple users are utilized in an efficient way. This model is formulated as an optimization problem with the goal of decreasing the consumption of energy and computation delay. This type of problem is NP-hard, due to the curseof-dimensionality challenge, thus, a deep learning optimization approach is presented to find an optimal solution. Additionally, an AES-based cryptographic approach is implemented as a security layer to satisfy data security requirements. Experimental evaluation results show that the proposed model can reduce offloading overhead by up to 13.2% and 64.7% in comparison with full offloading and local execution while scaling well for large-scale devices.


Author(s):  
Jungho Park ◽  
Hadi El-Amine ◽  
Nevin Mutlu

We study a large-scale resource allocation problem with a convex, separable, not necessarily differentiable objective function that includes uncertain parameters falling under an interval uncertainty set, considering a set of deterministic constraints. We devise an exact algorithm to solve the minimax regret formulation of this problem, which is NP-hard, and we show that the proposed Benders-type decomposition algorithm converges to an [Formula: see text]-optimal solution in finite time. We evaluate the performance of the proposed algorithm via an extensive computational study, and our results show that the proposed algorithm provides efficient solutions to large-scale problems, especially when the objective function is differentiable. Although the computation time takes longer for problems with nondifferentiable objective functions as expected, we show that good quality, near-optimal solutions can be achieved in shorter runtimes by using our exact approach. We also develop two heuristic approaches, which are partially based on our exact algorithm, and show that the merit of the proposed exact approach lies in both providing an [Formula: see text]-optimal solution and providing good quality near-optimal solutions by laying the foundation for efficient heuristic approaches.


2020 ◽  
Vol 50 (5) ◽  
pp. 272-286
Author(s):  
Zhiwei (Tony) Qin ◽  
Xiaocheng Tang ◽  
Yan Jiao ◽  
Fan Zhang ◽  
Zhe Xu ◽  
...  

Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of millions per day. Because of the dynamic and stochastic nature of supply and demand in this context, the ride-hailing order-dispatching problem is challenging to solve for an optimal solution. Added to the complexity are considerations of system response time, reliability, and multiple objectives. In this paper, we describe how our approach to this optimization problem has evolved from a combinatorial optimization approach to one that encompasses a semi-Markov decision-process model and deep reinforcement learning. We discuss the various practical considerations of our solution development and real-world impact to the business.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenquan Qin ◽  
Xueyan Qiu ◽  
Jin Ye ◽  
Lei Wang

The foundation of urban computing and smart technology is edge computing. Edge computing provides a new solution for large-scale computing and saves more energy while bringing a small amount of latency compared to local computing on mobile devices. To investigate the relationship between the cost of computing tasks and the consumption of time and energy, we propose a computation offloading scheme that achieves lower execution costs by cooperatively allocating computing resources by mobile devices and the edge server. For the mixed-integer nonlinear optimization problem of computing resource allocation and offloading strategy, we segment the problem and propose an iterative optimization algorithm to find the approximate optimal solution. The numerical results of the simulation experiment show that the algorithm can obtain a lower total cost than the baseline algorithm in most cases.


2019 ◽  
Author(s):  
Liqun Cao ◽  
Jinzhe Zeng ◽  
Mingyuan Xu ◽  
Chih-Hao Chin ◽  
Tong Zhu ◽  
...  

Combustion is a kind of important reaction that affects people's daily lives and the development of aerospace. Exploring the reaction mechanism contributes to the understanding of combustion and the more efficient use of fuels. Ab initio quantum mechanical (QM) calculation is precise but limited by its computational time for large-scale systems. In order to carry out reactive molecular dynamics (MD) simulation for combustion accurately and quickly, we develop the MFCC-combustion method in this study, which calculates the interaction between atoms using QM method at the level of MN15/6-31G(d). Each molecule in systems is treated as a fragment, and when the distance between any two atoms in different molecules is greater than 3.5 Å, a new fragment involved two molecules is produced in order to consider the two-body interaction. The deviations of MFCC-combustion from full system calculations are within a few kcal/mol, and the result clearly shows that the calculated energies of the different systems using MFCC-combustion are close to converging after the distance thresholds are larger than 3.5 Å for the two-body QM interactions. The methane combustion was studied with the MFCC-combustion method to explore the combustion mechanism of the methane-oxygen system.


2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


Author(s):  
Moretti Emilio ◽  
Tappia Elena ◽  
Limère Veronique ◽  
Melacini Marco

AbstractAs a large number of companies are resorting to increased product variety and customization, a growing attention is being put on the design and management of part feeding systems. Recent works have proved the effectiveness of hybrid feeding policies, which consist in using multiple feeding policies in the same assembly system. In this context, the assembly line feeding problem (ALFP) refers to the selection of a suitable feeding policy for each part. In literature, the ALFP is addressed either by developing optimization models or by categorizing the parts and assigning these categories to policies based on some characteristics of both the parts and the assembly system. This paper presents a new approach for selecting a suitable feeding policy for each part, based on supervised machine learning. The developed approach is applied to an industrial case and its performance is compared with the one resulting from an optimization approach. The application to the industrial case allows deepening the existing trade-off between efficiency (i.e., amount of data to be collected and dedicated resources) and quality of the ALFP solution (i.e., closeness to the optimal solution), discussing the managerial implications of different ALFP solution approaches and showing the potential value stemming from machine learning application.


Sign in / Sign up

Export Citation Format

Share Document