scholarly journals A Peak Detection Algorithm for Localization and Classification of Heart Sounds in PCG Signals using K-means Clustering

Author(s):  
Muhammad Zubair

Traditionally, the heart sound classification process is performed by first finding the elementary heart sounds of the phonocardiogram (PCG) signal. After detecting sounds S1 and S2, the features like envelograms, Mel frequency cepstral coefficients (MFCC), kurtosis, etc., of these sounds are extracted. These features are used for the classification of normal and abnormal heart sounds, which leads to an increase in computational complexity. In this paper, we have proposed a fully automated algorithm to localize heart sounds using K-means clustering. The K-means clustering model can differentiate between the primitive heart sounds like S1, S2, S3, S4 and the rest of the insignificant sounds like murmurs without requiring the excessive pre-processing of data. The peaks detected from the noisy data are validated by implementing five classification models with 30 fold cross-validation. These models have been implemented on a publicly available PhysioNet/Cinc challenge 2016 database. Lastly, to classify between normal and abnormal heart sounds, the localized labelled peaks from all the datasets were fed as an input to the various classifiers such as support vector machine (SVM), K-nearest neighbours (KNN), logistic regression, stochastic gradient descent (SGD) and multi-layer perceptron (MLP). To validate the superiority of the proposed work, we have compared our reported metrics with the latest state-of-the-art works. Simulation results show that the highest classification accuracy of 94.75% is achieved by the SVM classifier among all other classifiers.

2021 ◽  
Author(s):  
Muhammad Zubair

Traditionally, the heart sound classification process is performed by first finding the elementary heart sounds of the phonocardiogram (PCG) signal. After detecting sounds S1 and S2, the features like envelograms, Mel frequency cepstral coefficients (MFCC), kurtosis, etc., of these sounds are extracted. These features are used for the classification of normal and abnormal heart sounds, which leads to an increase in computational complexity. In this paper, we have proposed a fully automated algorithm to localize heart sounds using K-means clustering. The K-means clustering model can differentiate between the primitive heart sounds like S1, S2, S3, S4 and the rest of the insignificant sounds like murmurs without requiring the excessive pre-processing of data. The peaks detected from the noisy data are validated by implementing five classification models with 30 fold cross-validation. These models have been implemented on a publicly available PhysioNet/Cinc challenge 2016 database. Lastly, to classify between normal and abnormal heart sounds, the localized labelled peaks from all the datasets were fed as an input to the various classifiers such as support vector machine (SVM), K-nearest neighbours (KNN), logistic regression, stochastic gradient descent (SGD) and multi-layer perceptron (MLP). To validate the superiority of the proposed work, we have compared our reported metrics with the latest state-of-the-art works. Simulation results show that the highest classification accuracy of 94.75% is achieved by the SVM classifier among all other classifiers.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450046 ◽  
Author(s):  
WENYING ZHANG ◽  
XINGMING GUO ◽  
ZHIHUI YUAN ◽  
XINGHUA ZHU

Analysis of heart sound is of great importance to the diagnosis of heart diseases. Most of the feature extraction methods about heart sound have focused on linear time-variant or time-invariant models. While heart sound is a kind of highly nonstationary and nonlinear vibration signal, traditional methods cannot fully reveal its essential properties. In this paper, a novel feature extraction approach is proposed for heart sound classification and recognition. The ensemble empirical mode decomposition (EEMD) method is used to decompose the heart sound into a finite number of intrinsic mode functions (IMFs), and the correlation dimensions of the main IMF components (IMF1~IMF4) are calculated as feature set. Then the classical Binary Tree Support Vector Machine (BT-SVM) classifier is employed to classify the heart sounds which include the normal heart sounds (NHSs) and three kinds of abnormal signals namely mitral stenosis (MT), ventricular septal defect (VSD) and aortic stenosis (AS). Finally, the performance of the new feature set is compared with the correlation dimensions of original signals and the main IMF components obtained by the EMD method. The results showed that, for NHSs, the feature set proposed in this paper performed the best with recognition rate of 98.67%. For the abnormal signals, the best recognition rate of 91.67% was obtained. Therefore, the proposed feature set is more superior to two comparative feature sets, which has potential application in the diagnosis of cardiovascular diseases.


The two diastolic heart sounds reflecting the malfunctionality of heart are third and fourth heartsounds(S3 and S4). Early detection of heart failures can decrease the risk by identifying the abnormal heart sounds through Phonocardiogram (PCG) signal analysis. In this paper abnormal heart sounds are identified and classified using Intrinsic time scale decomposition (ITD) and Support vector machine (SVM). The proposed framework has been tested on authenticated database signals under abnormal conditions. The success rate is really conquering for the SVM classifier with an accuracy over 94% in the S3 detection and 91% for the S4, which reveals the effectiveness and high efficiency of the proposed work


Author(s):  
Huseyin Coskun ◽  
Tuncay Yigit

The aim of this chapter is to classify normal and extra systole heart sounds using artificial intelligence methods. Initially, both heart sounds have been passed from Butterworth, Chebyshev, Elliptic digital filter in specific frequency values to remove noise. Afterwards, features of heart sounds have been obtained for classification. For this process, wavelet transform and Mel-frequency cepstral coefficients (MFCC) methods have been applied. Training and test data have been created for classifier by taking means and standard deviation of gained feature. Support vector machine (SVM) and artificial neural network (ANN) methods have been used for classification of these heart sounds. Using wavelet and MFCC features, classification success of SVM has been obtained as 93.33% and 100%, respectively. Using wavelet and MFCC features, classification success of ANN has been obtained as 83.33% and 90%, respectively.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


2018 ◽  
Vol 28 (02) ◽  
pp. 1750036 ◽  
Author(s):  
Shuqiang Wang ◽  
Yong Hu ◽  
Yanyan Shen ◽  
Hanxiong Li

In this study, we propose an automated framework that combines diffusion tensor imaging (DTI) metrics with machine learning algorithms to accurately classify control groups and groups with cervical spondylotic myelopathy (CSM) in the spinal cord. The comparison between selected voxel-based classification and mean value-based classification were performed. A support vector machine (SVM) classifier using a selected voxel-based dataset produced an accuracy of 95.73%, sensitivity of 93.41% and specificity of 98.64%. The efficacy of each index of diffusion for classification was also evaluated. Using the proposed approach, myelopathic areas in CSM are detected to provide an accurate reference to assist spine surgeons in surgical planning in complicated cases.


Author(s):  
S. Mirzaee ◽  
M. Motagh ◽  
H. Arefi ◽  
M. Nooryazdan

Due to its special imaging characteristics, Synthetic Aperture Radar (SAR) has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM) classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.


Author(s):  
Sumit S. Lad ◽  
◽  
Amol C. Adamuthe

Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.


Action recognition (AR) plays a fundamental role in computer vision and video analysis. We are witnessing an astronomical increase of video data on the web and it is difficult to recognize the action in video due to different view point of camera. For AR in video sequence, it depends upon appearance in frame and optical flow in frames of video. In video spatial and temporal components of video frames features play integral role for better classification of action in videos. In the proposed system, RGB frames and optical flow frames are used for AR with the help of Convolutional Neural Network (CNN) pre-trained model Alex-Net extract features from fc7 layer. Support vector machine (SVM) classifier is used for the classification of AR in videos. For classification purpose, HMDB51 dataset have been used which includes 51 Classes of human action. The dataset is divided into 51 action categories. Using SVM classifier, extracted features are used for classification and achieved best result 95.6% accuracy as compared to other techniques of the state-of- art.v


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 27-31
Author(s):  
Ken-ji Ee ◽  
Ahmad Fakhri Bin Ab. Nasir ◽  
Anwar P. P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Nur Hafieza Ismail

The animal classification system is a technology to classify the animal class (type) automatically and useful in many applications. There are many types of learning models applied to this technology recently. Nonetheless, it is worth noting that the extraction of the features and the classification of the animal features is non-trivial, particularly in the deep learning approach for a successful animal classification system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards animal classification applications are somewhat limited. The present study aims to determine a suitable TL-conventional classifier pipeline for animal classification. The VGG16 and VGG19 were used in extracting features and then coupled with either k-Nearest Neighbour (k-NN) or Support Vector Machine (SVM) classifier. Prior to that, a total of 4000 images were gathered consisting of a total of five classes which are cows, goats, buffalos, dogs, and cats. The data was split into the ratio of 80:20 for train and test. The classifiers hyper parameters are tuned by the Grids Search approach that utilises the five-fold cross-validation technique. It was demonstrated from the study that the best TL pipeline identified is the VGG16 along with an optimised SVM, as it was able to yield an average classification accuracy of 0.975. The findings of the present investigation could facilitate animal classification application, i.e. for monitoring animals in wildlife.


Sign in / Sign up

Export Citation Format

Share Document