scholarly journals A Theory for Electromagnetic Radiation and Coupling

Author(s):  
gaobiao xiao

This is latest version of my theory. I have (1)revised the abstract and the Introduction section; (2) added a section for mutual coupling to show that EM radiation and EM mutual coupling are almost the same issue, including figures for mutual couplings, and detailed expressions for the mutual coupling energies; (3)added the real radiative power for the Hertzian dipole; (4) added example of a Yagi antenna; (5) added some detailed parameters for numerical implementation.

2008 ◽  
Vol 16 (02) ◽  
pp. 225-256 ◽  
Author(s):  
STEVEN A. STOTTS

A coupled-mode formalism based on complex Airy layer mode solutions is presented. It is an extension into the complex horizontal wavenumber plane of the companion article [Stotts, J. Acoust. Soc. Am.111 (2002) 1623–1643], referred to here as the real horizontal wavenumber version, which accounted for general ocean environments but was restricted to normal modes on the real horizontal wavenumber axis. A formulation of the expressions for both trapped and continuum complex coupling coefficients is developed to dramatically reduce computer storage requirements and to make the calculation more practical. The motivation of this work is to demonstrate the numerical implementation of the derivations and to apply the method to an example benchmark. Differences from the real horizontal wavenumber formalism are highlighted. The coupled equations are solved using the Lanczos method [Knobles, J. Acoust. Soc. Am.96 (1994) 1741–1747]. Comparisons of the coupled-mode solution to a parabolic equation solution for the ONR shelf break benchmark validate the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Tian Lan ◽  
Qiu-Cui Li ◽  
Yu-Shen Dou ◽  
Xun-Ya Jiang

This paper presents a two-dimensional infinite dipole array system with a mushroom-like high-impedance surface (HIS) ground plane with wide-angle scanning capability in the E-plane. The unit cell of the proposed antenna array consists of a dipole antenna and a four-by-four HIS ground. The simulation results show that the proposed antenna array can achieve a wide scanning angle of up to 65° in the E-plane with an excellent impedance match and a small S11. Floquet mode analysis is utilized to analyze the active impedance and the reflection coefficient. Good agreement is obtained between the theoretical results and the simulations. Using numerical and theoretical analyses, we reveal the mechanism of such excellent wide scanning properties. For the range of small scanning angles, these excellent properties result mainly from the special reflection phase of the HIS ground, which can cause the mutual coupling between the elements of the real array to be compensated by the mutual coupling effect between the real array and the mirror array. For the range of large scanning angles, since the surface wave (SW) mode could be resonantly excited by a high-order Floquet mode TM−1,0 from the array and since the SW mode could be converted into a leaky wave (LW) mode by the scattering of the array, the radiation field from the LW mode is nearly in phase with the direct radiating field from the array. Therefore, with help from the special reflection phase of the HIS and the designed LW mode of the HIS ground, the antenna array with an HIS ground can achieve a wide-angle scanning performance.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


Author(s):  
Ziyu Xu ◽  
Zheng Zhao ◽  
Qisheng Zhang ◽  
Shichu Yan ◽  
Linyan Guo ◽  
...  

2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


Sign in / Sign up

Export Citation Format

Share Document