scholarly journals Performance of a deep learning CNN model for the automated detection of 13 common conditions on Chest X-rays

Author(s):  
Tirupathi Karthik ◽  
Vijayalakshmi Kasiraman ◽  
Bhavani Paski ◽  
Kashyap Gurram ◽  
Amit Talwar ◽  
...  

Background and aims: Chest X-rays are widely used, non-invasive, cost effective imaging tests. However, the complexity of interpretation and global shortage of radiologists have led to reporting backlogs, delayed diagnosis and a compromised quality of care. A fully automated, reliable artificial intelligence system that can quickly triage abnormal images for urgent radiologist review would be invaluable in the clinical setting. The aim was to develop and validate a deep learning Convoluted Neural Network algorithm to automate the detection of 13 common abnormalities found on Chest X-rays. Method: In this retrospective study, a VGG 16 deep learning model was trained on images from the Chest-ray 14, a large publicly available Chest X-ray dataset, containing over 112,120 images with annotations. Images were split into training, validation and testing sets and trained to identify 13 specific abnormalities. The primary performance measures were accuracy and precision. Results: The model demonstrated an overall accuracy of 88% in the identification of abnormal X-rays and 87% in the detection of 13 common chest conditions with no model bias. Conclusion: This study demonstrates that a well-trained deep learning algorithm can accurately identify multiple abnormalities on X-ray images. As such models get further refined, they can be used to ease radiology workflow bottlenecks and improve reporting efficiency. Napier Healthcare’s team that developed this model consists of medical IT professionals who specialize in AI and its practical application in acute & long-term care settings. This is currently being piloted in a few hospitals and diagnostic labs on a commercial basis.

2021 ◽  
Author(s):  
Tirupathi Karthik ◽  
Vijayalakshmi Kasiraman ◽  
Bhavani Paski ◽  
Kashyap Gurram ◽  
Amit Talwar ◽  
...  

Background and aims: Chest X-rays are widely used, non-invasive, cost effective imaging tests. However, the complexity of interpretation and global shortage of radiologists have led to reporting backlogs, delayed diagnosis and a compromised quality of care. A fully automated, reliable artificial intelligence system that can quickly triage abnormal images for urgent radiologist review would be invaluable in the clinical setting. The aim was to develop and validate a deep learning Convoluted Neural Network algorithm to automate the detection of 13 common abnormalities found on Chest X-rays. Method: In this retrospective study, a VGG 16 deep learning model was trained on images from the Chest-ray 14, a large publicly available Chest X-ray dataset, containing over 112,120 images with annotations. Images were split into training, validation and testing sets and trained to identify 13 specific abnormalities. The primary performance measures were accuracy and precision. Results: The model demonstrated an overall accuracy of 88% in the identification of abnormal X-rays and 87% in the detection of 13 common chest conditions with no model bias. Conclusion: This study demonstrates that a well-trained deep learning algorithm can accurately identify multiple abnormalities on X-ray images. As such models get further refined, they can be used to ease radiology workflow bottlenecks and improve reporting efficiency. Napier Healthcare’s team that developed this model consists of medical IT professionals who specialize in AI and its practical application in acute & long-term care settings. This is currently being piloted in a few hospitals and diagnostic labs on a commercial basis.


Author(s):  
S. Rajkumar ◽  
P. V. Rajaraman ◽  
Haree Shankar Meganathan ◽  
V. Sapthagirivasan ◽  
K. Tejaswinee ◽  
...  

The novel coronavirus (COVID-19) was first reported in the Wuhan City of China in 2019 and became a pandemic. The outbreak has caused shocking effects to the people across the globe. It is important to screen a majority of the population in every country and for the respective governments to take appropriate action. There is a need for a rapid screening system to triage and recommend the patients for appropriate treatment. Chest X-ray imaging is one of the potential modalities, which has ample advantages such as wide availability even in the villages, portability, fast data sharing option from the point of capturing to the point of investigation, etc. The aim of the proposed work is to develop a deep learning algorithm for screening COVID-19 cases by leveraging the widely available X-ray imaging. We have built a deep learning Convolutional Neural Network model utilizing a combination of the public domain (open-source COVID-19) and private data (pneumonia and normal cases). The dataset was used before and after the segmentation of the lung region for training and testing. The outcome of the classification after lung segmentation resulted in significant superiority. The average accuracy achieved by the proposed system was 96%. The heat maps incorporated in the system were helpful for our radiologists to cross-verify whether the appropriate features are identified. This system (COVID-Detect) can be used in remote places in the countries affected by COVID-19 for mass screening of suspected cases and suggesting appropriate actions, such as recommending confirmatory tests.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Pranav Rajpurkar ◽  
Chloe O’Connell ◽  
Amit Schechter ◽  
Nishit Asnani ◽  
Jason Li ◽  
...  

Abstract Tuberculosis (TB) is the leading cause of preventable death in HIV-positive patients, and yet often remains undiagnosed and untreated. Chest x-ray is often used to assist in diagnosis, yet this presents additional challenges due to atypical radiographic presentation and radiologist shortages in regions where co-infection is most common. We developed a deep learning algorithm to diagnose TB using clinical information and chest x-ray images from 677 HIV-positive patients with suspected TB from two hospitals in South Africa. We then sought to determine whether the algorithm could assist clinicians in the diagnosis of TB in HIV-positive patients as a web-based diagnostic assistant. Use of the algorithm resulted in a modest but statistically significant improvement in clinician accuracy (p = 0.002), increasing the mean clinician accuracy from 0.60 (95% CI 0.57, 0.63) without assistance to 0.65 (95% CI 0.60, 0.70) with assistance. However, the accuracy of assisted clinicians was significantly lower (p < 0.001) than that of the stand-alone algorithm, which had an accuracy of 0.79 (95% CI 0.77, 0.82) on the same unseen test cases. These results suggest that deep learning assistance may improve clinician accuracy in TB diagnosis using chest x-rays, which would be valuable in settings with a high burden of HIV/TB co-infection. Moreover, the high accuracy of the stand-alone algorithm suggests a potential value particularly in settings with a scarcity of radiological expertise.


2020 ◽  
Vol 498 (4) ◽  
pp. 5620-5628
Author(s):  
Y Su ◽  
Y Zhang ◽  
G Liang ◽  
J A ZuHone ◽  
D J Barnes ◽  
...  

ABSTRACT The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network, ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low-resolution mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent, 81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central gas densities, with an average ${\rm BAcc}=81{{\ \rm per\ cent}}$, or surface brightness concentrations, giving ${\rm BAcc}=73{{\ \rm per\ cent}}$. We use class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the network has utilized regions from cluster centres out to r ≈ 300 kpc and r ≈ 500 kpc to identify CC and NCC clusters, respectively. It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.


2020 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Ki-Sun Lee ◽  
Jae Young Kim ◽  
Eun-tae Jeon ◽  
Won Suk Choi ◽  
Nan Hee Kim ◽  
...  

According to recent studies, patients with COVID-19 have different feature characteristics on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer depths and degree of fine-tuning on transfer learning with a deep convolutional neural network (CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR images used in this study were collected from publicly available repositories, and the collected images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as backbone networks. Then, each backbone network was trained with different degrees of fine-tuning and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950 concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of the VGG16 backbone network. In conclusion, in the classification of medical images with a limited number of data, a deeper layer depth may not guarantee better results. In addition, even if the same pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an efficient deep learning model.


2020 ◽  
Author(s):  
S. Duchesne ◽  
D. Gourdeau ◽  
P. Archambault ◽  
C. Chartrand-Lefebvre ◽  
L. Dieumegarde ◽  
...  

ABSTRACTBackgroundDecision scores and ethically mindful algorithms are being established to adjudicate mechanical ventilation in the context of potential resources shortage due to the current onslaught of COVID-19 cases. There is a need for a reproducible and objective method to provide quantitative information for those scores.PurposeTowards this goal, we present a retrospective study testing the ability of a deep learning algorithm at extracting features from chest x-rays (CXR) to track and predict radiological evolution.Materials and MethodsWe trained a repurposed deep learning algorithm on the CheXnet open dataset (224,316 chest X-ray images of 65,240 unique patients) to extract features that mapped to radiological labels. We collected CXRs of COVID-19-positive patients from two open-source datasets (last accessed on April 9, 2020)(Italian Society for Medical and Interventional Radiology and MILA). Data collected form 60 pairs of sequential CXRs from 40 COVID patients (mean age ± standard deviation: 56 ± 13 years; 23 men, 10 women, seven not reported) and were categorized in three categories: “Worse”, “Stable”, or “Improved” on the basis of radiological evolution ascertained from images and reports. Receiver operating characteristic analyses, Mann-Whitney tests were performed.ResultsOn patients from the CheXnet dataset, the area under ROC curves ranged from 0.71 to 0.93 for seven imaging features and one diagnosis. Deep learning features between “Worse” and “Improved” outcome categories were significantly different for three radiological signs and one diagnostic (“Consolidation”, “Lung Lesion”, “Pleural effusion” and “Pneumonia”; all P < 0.05). Features from the first CXR of each pair could correctly predict the outcome category between “Worse” and “Improved” cases with 82.7% accuracy.ConclusionCXR deep learning features show promise for classifying the disease trajectory. Once validated in studies incorporating clinical data and with larger sample sizes, this information may be considered to inform triage decisions.


Author(s):  
Muntasir Al-Asfoor

Abstract During the times of pandemics, faster diagnosis plays a key role in the response efforts to contain the disease as well as reducing its spread. Computer-aided detection would save time and increase the quality of diagnosis in comparison with manual human diagnosis. Artificial Intelligence (AI) through deep learning is considered as a reliable method to design such systems. In this research paper, an AI based diagnosis approach has been suggested to tackle the COVID-19 pandemic. The proposed system employs a deep learning algorithm on chest x-ray images to detect the infected subjects. An enhanced Convolutional Neural Network (CNN) architecture has been designed with 22 layers which is then trained over a chest x-ray dataset. More after, a classification component has been introduced to classify the x-ray images into two categories (Covid-19 and not Covid-19) of infection. The system has been evaluated through a series of observations and experimentation. The experimental results have shown a promising performance in terms of accuracy. The system has diagnosed Covid-19 with accuracy of 95.7% and normal subjects with accuracy of 93.1 while it showed 96.7 accuracy on Pneumonia.


2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Mohamed Chetoui ◽  
Moulay A. Akhloufi ◽  
Bardia Yousefi ◽  
El Mostafa Bouattane

The coronavirus pandemic is spreading around the world. Medical imaging modalities such as radiography play an important role in the fight against COVID-19. Deep learning (DL) techniques have been able to improve medical imaging tools and help radiologists to make clinical decisions for the diagnosis, monitoring and prognosis of different diseases. Computer-Aided Diagnostic (CAD) systems can improve work efficiency by precisely delineating infections in chest X-ray (CXR) images, thus facilitating subsequent quantification. CAD can also help automate the scanning process and reshape the workflow with minimal patient contact, providing the best protection for imaging technicians. The objective of this study is to develop a deep learning algorithm to detect COVID-19, pneumonia and normal cases on CXR images. We propose two classifications problems, (i) a binary classification to classify COVID-19 and normal cases and (ii) a multiclass classification for COVID-19, pneumonia and normal. Nine datasets and more than 3200 COVID-19 CXR images are used to assess the efficiency of the proposed technique. The model is trained on a subset of the National Institute of Health (NIH) dataset using swish activation, thus improving the training accuracy to detect COVID-19 and other pneumonia. The models are tested on eight merged datasets and on individual test sets in order to confirm the degree of generalization of the proposed algorithms. An explainability algorithm is also developed to visually show the location of the lung-infected areas detected by the model. Moreover, we provide a detailed analysis of the misclassified images. The obtained results achieve high performances with an Area Under Curve (AUC) of 0.97 for multi-class classification (COVID-19 vs. other pneumonia vs. normal) and 0.98 for the binary model (COVID-19 vs. normal). The average sensitivity and specificity are 0.97 and 0.98, respectively. The sensitivity of the COVID-19 class achieves 0.99. The results outperformed the comparable state-of-the-art models for the detection of COVID-19 on CXR images. The explainability model shows that our model is able to efficiently identify the signs of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document