scholarly journals Data Reconstruction Coverage Based on Graph Signal Processing for Wireless Sensor Networks

Author(s):  
Jie Feng ◽  
Fangjiong Chen ◽  
Hongbin Cheng

Sensing coverage is a crucial metric for the quality of service of Wireless Sensor Networks (WSNs). Coverage models have a great impact on sensing coverage of WSNs. However, existing coverage models are simple but inefficient, like the most frequently used disk coverage model, in which a covered point is within the fixed sensing radius of at least one sensor node. Thus, how to develop an efficient coverage model is an essential problem. To this end, in this letter, we propose a novel coverage model without the limitation of the sensor’s sensing radius, namely, Data Reconstruction Coverage (DRC). Based on the theory of graph signal processing, the model can jointly reconstruct missing data at unsampled points (which are not covered by any sensors) by using our proposed centralized data reconstruction coverage algorithm which fully exploits the smoothness of temporal difference signals and the graph Laplacian matrix, without increasing the number of sensors. Simulation results based on real-world datasets show that the proposed DRC model has better coverage performance of WSNs compared with the disk coverage model and confident information coverage model typically used in WSNs.

2021 ◽  
Author(s):  
Jie Feng ◽  
Fangjiong Chen ◽  
Hongbin Cheng

Sensing coverage is a crucial metric for the quality of service of Wireless Sensor Networks (WSNs). Coverage models have a great impact on sensing coverage of WSNs. However, existing coverage models are simple but inefficient, like the most frequently used disk coverage model, in which a covered point is within the fixed sensing radius of at least one sensor node. Thus, how to develop an efficient coverage model is an essential problem. To this end, in this letter, we propose a novel coverage model without the limitation of the sensor’s sensing radius, namely, Data Reconstruction Coverage (DRC). Based on the theory of graph signal processing, the model can jointly reconstruct missing data at unsampled points (which are not covered by any sensors) by using our proposed centralized data reconstruction coverage algorithm which fully exploits the smoothness of temporal difference signals and the graph Laplacian matrix, without increasing the number of sensors. Simulation results based on real-world datasets show that the proposed DRC model has better coverage performance of WSNs compared with the disk coverage model and confident information coverage model typically used in WSNs.


2011 ◽  
Vol 1 ◽  
pp. 66-70
Author(s):  
Wen Ming Cao ◽  
Tian Cheng He

While moderate loss of coverage can be tolerated by WSN applications, loss of connectivity can be fatal. Moreover, since sensors are subject to unanticipated failures after deployment, it is not sufficient for a wireless sensor network to just be connected, it should be Clifford 3-connected . In this dissertation, we propose optimal deployment patterns to achieve both full coverage and Cliford 3-connectivity, and analyses their optimality for all values of , where is the communication radius and is the sensing radius.


2021 ◽  
Vol 11 (21) ◽  
pp. 10197
Author(s):  
Wenbo Zhu ◽  
Chia-Ling Huang ◽  
Wei-Chang Yeh ◽  
Yunzhi Jiang ◽  
Shi-Yi Tan

The wireless sensor network (WSN) plays an essential role in various practical smart applications, e.g., smart grids, smart factories, Internet of Things, and smart homes, etc. WSNs are comprised and embedded wireless smart sensors. With advanced developments in wireless sensor networks research, sensors have been rapidly used in various fields. In the meantime, the WSN performance depends on the coverage ratio of the sensors being used. However, the coverage of sensors generally relates to their cost, which usually has a limit. Hence, a new bi-tuning simplified swarm optimization (SSO) is proposed that is based on the SSO to solve such a budget-limited WSN sensing coverage problem to maximize the number of coverage areas to improve the performance of WSNs. The proposed bi-tuning SSO enhances SSO by integrating the novel concept to tune both the SSO parameters and SSO update mechanism simultaneously. The performance and applicability of the proposed bi-tuning SSO using seven different parameter settings are demonstrated through an experiment involving nine WSN tests ranging from 20, 100, to 300 sensors. The proposed bi-tuning SSO outperforms two state-of-the-art algorithms: genetic algorithm (GA) and particle swarm optimization (PSO), and can efficiently accomplish the goals of this work.


2021 ◽  
pp. 1-13
Author(s):  
Guangxu Yu

In order to overcome the problems of low detection probability, low coverage uniformity and low coverage of current path coverage enhancement methods in wireless sensor networks, a new path coverage enhancement method based on CVT model is proposed in this paper. Firstly, the node perception model and network coverage model are constructed. On the basis of the node awareness model and network coverage model, CVT model is used to adjust the connection mode, density and location of nodes in wireless sensor networks, so as to improve the coverage performance of nodes in the detection area in wireless sensor networks, and realize the effective enhancement of path coverage in wireless sensor networks. Experimental results show that, compared with the traditional methods, the proposed method has high detection probability, high coverage uniformity and coverage rate, and the highest coverage rate reaches 97%, which has higher practical application performance.


Sign in / Sign up

Export Citation Format

Share Document