scholarly journals Optimal Resource Allocation and Task Segmentation in IoT Enabled Mobile Edge Cloud

Author(s):  
Asad Mahmood ◽  
Yue Hong ◽  
Muhammad Khurram Ehsan ◽  
Shahid Mumtaz

<div>This work examines the convex optimization problem. The objective is to minimize the task duration by optimal allocation of the resources like local and edge computational capabilities, transmission power, and optimal task segmentation. For optimal allocation of resources, an algorithm name Estimation of Optimal Resource Allocator (EORA) is designed to optimize the function by keeping track of statistics of each candidate of the population. </div>

2021 ◽  
Author(s):  
Asad Mahmood ◽  
Yue Hong ◽  
Muhammad Khurram Ehsan ◽  
Shahid Mumtaz

<div>This work examines the convex optimization problem. The objective is to minimize the task duration by optimal allocation of the resources like local and edge computational capabilities, transmission power, and optimal task segmentation. For optimal allocation of resources, an algorithm name Estimation of Optimal Resource Allocator (EORA) is designed to optimize the function by keeping track of statistics of each candidate of the population. </div>


2021 ◽  
Author(s):  
Shujjat A. Khan

The streaming capacity for a channel is defined as the maximum streaming rate that can be achieved by every user in the channel. In the thesis, we investigated the streaming capacity problem in both tree-based and mesh-based Peer-to-Peer (P2P) live streaming systems, respectively. In tree-based multi-channel P2P live streaming systems, we propose a crosschannel resource sharing approach to improve the streaming capacity. We use cross-channel helpers to establish the cross-channel overlay links, with which the unused upload bandwidths in a channel can be utilized to help the bandwidth-deficient peers in another channel, thus improving the streaming capacity. In meshed-based P2P live streaming systems, we propose a resource sharing approach to improve the streaming capacity. In mesh-based P2P streaming systems, each peer exchanges video chunks with a set of its neighbors. We formulate the streaming capacity problem into an optimal resource allocation problem. By solving the optimization problem, we can optimally allocate the link rates for each peer, thus improve the streaming capacity.


2021 ◽  
Author(s):  
Shujjat A. Khan

The streaming capacity for a channel is defined as the maximum streaming rate that can be achieved by every user in the channel. In the thesis, we investigated the streaming capacity problem in both tree-based and mesh-based Peer-to-Peer (P2P) live streaming systems, respectively. In tree-based multi-channel P2P live streaming systems, we propose a crosschannel resource sharing approach to improve the streaming capacity. We use cross-channel helpers to establish the cross-channel overlay links, with which the unused upload bandwidths in a channel can be utilized to help the bandwidth-deficient peers in another channel, thus improving the streaming capacity. In meshed-based P2P live streaming systems, we propose a resource sharing approach to improve the streaming capacity. In mesh-based P2P streaming systems, each peer exchanges video chunks with a set of its neighbors. We formulate the streaming capacity problem into an optimal resource allocation problem. By solving the optimization problem, we can optimally allocate the link rates for each peer, thus improve the streaming capacity.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fangwei Li ◽  
Yue Wu ◽  
Yifang Nie ◽  
Ce Shi

This paper studies optimal resource allocation in the wireless powered communication networks (WPCN) combined with time reversal (TR) in which one hybrid access point (H-AP) broadcasts constant wireless energy to a set of distributed users in the downlink (DL) and receives information from the users via space division multiple access (SDMA) in the uplink (UL). Inevitable interferences will occur when users transmit information in the UL simultaneously and the special space-time focusing of TR is used to suppress the interferences. An efficient protocol is proposed to support wireless energy transfer (WET) and TR in the DL and wireless information transmission in the UL for the proposed TR-WPCN. We optimize the time allocations to the H-AP for DL WET, DL TR, and UL WIT to maximize the sum throughput. Due to the nonconvexity of the studied optimization problem, we optimize variables successively, where the nonconvex optimization problem is transformed into the convex optimization problem. The approximate convex optimization problem can then be solved iteratively combined with the dichotomy method. Simulation results show that the proposed scheme can effectively suppress interferences and improve system performance.


2021 ◽  
Author(s):  
Amira Jablaoui ◽  
Hichem Kmimech ◽  
Layth Sliman ◽  
Lotfi Nabli

In this article, we study the NP-Hard combinatorial optimization problem of the minimum initial marking (MIM) computation in labeled Petri net (L-PN) while considering a sequence of labels to minimize the resource consumption in a flexible manufacturing system (FMS), and we propose an approach based on the ant colony optimization (ACO) precisely the extension Rank-based ACO to optimal resource allocation and scheduling in FMS. The ACO meta-heuristic is inspired by the behavior of ants in foraging based on pheromones deposit. The numerical results show that the proposed algorithm obtained much better results than previous studies.


2021 ◽  
pp. 1-15
Author(s):  
Binbin Xu ◽  
Chang Chen ◽  
Jinrui Tang ◽  
Ruoli Tang

Due to the increasingly demand of wireless broadband applications in modern society, the device-to-device (D2D) communication technique plays an important role for improving communication spectrum efficiency and quality of service (QoS). This study focuses on the optimal allocation of link resource in D2D communication systems using intelligent approaches, in order to obtain optimal energy efficiency of D2D-pair users (DP) and also ensure communication QoS. To be specific, the optimal resource allocation (ORA) model for ensuring the cooperation between DP and cellular users (CU) is established, and a novel coding strategy of ORA model is also proposed. Then, for efficiently optimizing the ORA model, a novel swarm-intelligence-based algorithm called the dynamic topology coevolving differential evolution (DTC-DE) is developed, and the efficiency of DTC-DE is also tested by a comprehensive set of benchmark functions. Finally, the DTC-DE algorithm is employed for optimizing the proposed ORA model, and some state-of-the-art algorithms are also employed for comparison. Result of case study shows that the DTC-DE outperforms its competitors significantly, and the optimal resource allocation can be obtained by DTC-DE with robust performance.


2020 ◽  
Vol 29 (16) ◽  
pp. 2050253
Author(s):  
Pravin Albert ◽  
Manikandan Nanjappan

Cloud computing model allows service-oriented system that fulfills the needs of the consumers. Capable resource management and task allocation are the important issues in cloud computing. Performance of the task scheduling method directly interrupts the utilization of cloud computing resources and the quality of experience of users. For that reason, reasonable virtual machine (VM) allocation and task scheduling are extremely important. In this paper, an efficient resource allocation model is proposed. Initially, the virtual machines are clustered with the help of Kernel Fuzzy [Formula: see text]-Means Clustering (KFCM) algorithm to reduce the complexity. After the clustering process, the user tasks are allocated to the particular VM using artificial fish swarm optimization (AFSO) algorithm. A multi-objective function is designed to achieve an optimal resource allocation. The performance of the suggested technique is tested in terms of different metrics.


2020 ◽  
Vol 28 (04) ◽  
pp. 945-976
Author(s):  
JASON BINTZ ◽  
SUZANNE LENHART

The spatial distribution of resources for diffusive populations can have a strong effect on population abundance. We investigate the optimal allocation of resources for a diffusive population. Population dynamics are represented by a parabolic partial differential equation with density-dependent growth and resources are represented through their space- and time-varying influence on the growth function. We consider both local and integral constraints on resource allocation. The goal is to maximize the abundance of the population while minimizing the cost of resource allocation. After characterizing the optimal control in terms of the population solution and the adjoint functions, we illustrate several scenarios numerically. The effects of initial and boundary conditions are important for the optimal allocation of resources.


2013 ◽  
Vol 671-674 ◽  
pp. 2956-2960
Author(s):  
Qiang Li ◽  
Xiao Long Fang ◽  
Dao Fang Chang

To meet the goal of resource allocation optimization and port working efficiency, this thesis has proposed a kind of heuristic algorithm,Based on port optimal resource allocation theory and multi-objective dynamic characteristic analysis research, taking minimum anchorage Period as objective,separating from the individual berth and quay crane allocation method, this thesis analyzes berth-quay crane as one unit, building up the optimal resource allocation mathematic prototype of berth-quay crane with its working constraint conditions,which objectively reflects the actual port system status with full consideration on port flexibility and quay crane continuity characteristics.


Sign in / Sign up

Export Citation Format

Share Document