scholarly journals UQuAD1.0: Development of an Urdu Question Answering Training Data for Machine Reading Comprehension

Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>

2021 ◽  
Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>


2020 ◽  
pp. 1-22
Author(s):  
Sukanta Sen ◽  
Mohammed Hasanuzzaman ◽  
Asif Ekbal ◽  
Pushpak Bhattacharyya ◽  
Andy Way

Abstract Neural machine translation (NMT) has recently shown promising results on publicly available benchmark datasets and is being rapidly adopted in various production systems. However, it requires high-quality large-scale parallel corpus, and it is not always possible to have sufficiently large corpus as it requires time, money, and professionals. Hence, many existing large-scale parallel corpus are limited to the specific languages and domains. In this paper, we propose an effective approach to improve an NMT system in low-resource scenario without using any additional data. Our approach aims at augmenting the original training data by means of parallel phrases extracted from the original training data itself using a statistical machine translation (SMT) system. Our proposed approach is based on the gated recurrent unit (GRU) and transformer networks. We choose the Hindi–English, Hindi–Bengali datasets for Health, Tourism, and Judicial (only for Hindi–English) domains. We train our NMT models for 10 translation directions, each using only 5–23k parallel sentences. Experiments show the improvements in the range of 1.38–15.36 BiLingual Evaluation Understudy points over the baseline systems. Experiments show that transformer models perform better than GRU models in low-resource scenarios. In addition to that, we also find that our proposed method outperforms SMT—which is known to work better than the neural models in low-resource scenarios—for some translation directions. In order to further show the effectiveness of our proposed model, we also employ our approach to another interesting NMT task, for example, old-to-modern English translation, using a tiny parallel corpus of only 2.7K sentences. For this task, we use publicly available old-modern English text which is approximately 1000 years old. Evaluation for this task shows significant improvement over the baseline NMT.


Author(s):  
Ming Yan ◽  
Jiangnan Xia ◽  
Chen Wu ◽  
Bin Bi ◽  
Zhongzhou Zhao ◽  
...  

A fundamental trade-off between effectiveness and efficiency needs to be balanced when designing an online question answering system. Effectiveness comes from sophisticated functions such as extractive machine reading comprehension (MRC), while efficiency is obtained from improvements in preliminary retrieval components such as candidate document selection and paragraph ranking. Given the complexity of the real-world multi-document MRC scenario, it is difficult to jointly optimize both in an end-to-end system. To address this problem, we develop a novel deep cascade learning model, which progressively evolves from the documentlevel and paragraph-level ranking of candidate texts to more precise answer extraction with machine reading comprehension. Specifically, irrelevant documents and paragraphs are first filtered out with simple functions for efficiency consideration. Then we jointly train three modules on the remaining texts for better tracking the answer: the document extraction, the paragraph extraction and the answer extraction. Experiment results show that the proposed method outperforms the previous state-of-the-art methods on two large-scale multidocument benchmark datasets, i.e., TriviaQA and DuReader. In addition, our online system can stably serve typical scenarios with millions of daily requests in less than 50ms.


2020 ◽  
Vol 34 (05) ◽  
pp. 9146-9153
Author(s):  
Bingning Wang ◽  
Ting Yao ◽  
Qi Zhang ◽  
Jingfang Xu ◽  
Xiaochuan Wang

This paper presents the ReCO, a human-curated Chinese Reading Comprehension dataset on Opinion. The questions in ReCO are opinion based queries issued to commercial search engine. The passages are provided by the crowdworkers who extract the support snippet from the retrieved documents. Finally, an abstractive yes/no/uncertain answer was given by the crowdworkers. The release of ReCO consists of 300k questions that to our knowledge is the largest in Chinese reading comprehension. A prominent characteristic of ReCO is that in addition to the original context paragraph, we also provided the support evidence that could be directly used to answer the question. Quality analysis demonstrates the challenge of ReCO that it requires various types of reasoning skills such as causal inference, logical reasoning, etc. Current QA models that perform very well on many question answering problems, such as BERT (Devlin et al. 2018), only achieves 77% accuracy on this dataset, a large margin behind humans nearly 92% performance, indicating ReCO present a good challenge for machine reading comprehension. The codes, dataset and leaderboard will be freely available at https://github.com/benywon/ReCO.


Author(s):  
Mengshi Yu ◽  
Jian Liu ◽  
Yufeng Chen ◽  
Jinan Xu ◽  
Yujie Zhang

With task-oriented dialogue systems being widely applied in everyday life, slot filling, the essential component of task-oriented dialogue systems, is required to be quickly adapted to new domains that contain domain-specific slots with few or no training data. Previous methods for slot filling usually adopt sequence labeling framework, which, however, often has limited ability when dealing with the domain-specific slots. In this paper, we take a new perspective on cross-domain slot filling by framing it as a machine reading comprehension (MRC) problem. Our approach firstly transforms slot names into well-designed queries, which contain rich informative prior knowledge and are very helpful for the detection of domain-specific slots. In addition, we utilize the large-scale MRC dataset for pre-training, which further alleviates the data scarcity problem. Experimental results on SNIPS and ATIS datasets show that our approach consistently outperforms the existing state-of-the-art methods by a large margin.


Author(s):  
Tanmai Khanna ◽  
Jonathan N. Washington ◽  
Francis M. Tyers ◽  
Sevilay Bayatlı ◽  
Daniel G. Swanson ◽  
...  

AbstractThis paper presents an overview of Apertium, a free and open-source rule-based machine translation platform. Translation in Apertium happens through a pipeline of modular tools, and the platform continues to be improved as more language pairs are added. Several advances have been implemented since the last publication, including some new optional modules: a module that allows rules to process recursive structures at the structural transfer stage, a module that deals with contiguous and discontiguous multi-word expressions, and a module that resolves anaphora to aid translation. Also highlighted is the hybridisation of Apertium through statistical modules that augment the pipeline, and statistical methods that augment existing modules. This includes morphological disambiguation, weighted structural transfer, and lexical selection modules that learn from limited data. The paper also discusses how a platform like Apertium can be a critical part of access to language technology for so-called low-resource languages, which might be ignored or deemed unapproachable by popular corpus-based translation technologies. Finally, the paper presents some of the released and unreleased language pairs, concluding with a brief look at some supplementary Apertium tools that prove valuable to users as well as language developers. All Apertium-related code, including language data, is free/open-source and available at https://github.com/apertium.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Changchang Zeng ◽  
Shaobo Li

Machine reading comprehension (MRC) is a challenging natural language processing (NLP) task. It has a wide application potential in the fields of question answering robots, human-computer interactions in mobile virtual reality systems, etc. Recently, the emergence of pretrained models (PTMs) has brought this research field into a new era, in which the training objective plays a key role. The masked language model (MLM) is a self-supervised training objective widely used in various PTMs. With the development of training objectives, many variants of MLM have been proposed, such as whole word masking, entity masking, phrase masking, and span masking. In different MLMs, the length of the masked tokens is different. Similarly, in different machine reading comprehension tasks, the length of the answer is also different, and the answer is often a word, phrase, or sentence. Thus, in MRC tasks with different answer lengths, whether the length of MLM is related to performance is a question worth studying. If this hypothesis is true, it can guide us on how to pretrain the MLM with a relatively suitable mask length distribution for MRC tasks. In this paper, we try to uncover how much of MLM’s success in the machine reading comprehension tasks comes from the correlation between masking length distribution and answer length in the MRC dataset. In order to address this issue, herein, (1) we propose four MRC tasks with different answer length distributions, namely, the short span extraction task, long span extraction task, short multiple-choice cloze task, and long multiple-choice cloze task; (2) four Chinese MRC datasets are created for these tasks; (3) we also have pretrained four masked language models according to the answer length distributions of these datasets; and (4) ablation experiments are conducted on the datasets to verify our hypothesis. The experimental results demonstrate that our hypothesis is true. On four different machine reading comprehension datasets, the performance of the model with correlation length distribution surpasses the model without correlation.


Author(s):  
Xin Liu ◽  
Kai Liu ◽  
Xiang Li ◽  
Jinsong Su ◽  
Yubin Ge ◽  
...  

The lack of sufficient training data in many domains, poses a major challenge to the construction of domain-specific machine reading comprehension (MRC) models with satisfying performance. In this paper, we propose a novel iterative multi-source mutual knowledge transfer framework for MRC. As an extension of the conventional knowledge transfer with one-to-one correspondence, our framework focuses on the many-to-many mutual transfer, which involves synchronous executions of multiple many-to-one transfers in an iterative manner.Specifically, to update a target-domain MRC model, we first consider other domain-specific MRC models as individual teachers, and employ knowledge distillation to train a multi-domain MRC model, which is differentially required to fit the training data and match the outputs of these individual models according to their domain-level similarities to the target domain. After being initialized by the multi-domain MRC model, the target-domain MRC model is fine-tuned to match both its training data and the output of its previous best model simultaneously via knowledge distillation. Compared with previous approaches, our framework can continuously enhance all domain-specific MRC models by enabling each model to iteratively and differentially absorb the domain-shared knowledge from others. Experimental results and in-depth analyses on several benchmark datasets demonstrate the effectiveness of our framework.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Michael Adjeisah ◽  
Guohua Liu ◽  
Douglas Omwenga Nyabuga ◽  
Richard Nuetey Nortey ◽  
Jinling Song

Scaling natural language processing (NLP) to low-resourced languages to improve machine translation (MT) performance remains enigmatic. This research contributes to the domain on a low-resource English-Twi translation based on filtered synthetic-parallel corpora. It is often perplexing to learn and understand what a good-quality corpus looks like in low-resource conditions, mainly where the target corpus is the only sample text of the parallel language. To improve the MT performance in such low-resource language pairs, we propose to expand the training data by injecting synthetic-parallel corpus obtained by translating a monolingual corpus from the target language based on bootstrapping with different parameter settings. Furthermore, we performed unsupervised measurements on each sentence pair engaging squared Mahalanobis distances, a filtering technique that predicts sentence parallelism. Additionally, we extensively use three different sentence-level similarity metrics after round-trip translation. Experimental results on a diverse amount of available parallel corpus demonstrate that injecting pseudoparallel corpus and extensive filtering with sentence-level similarity metrics significantly improves the original out-of-the-box MT systems for low-resource language pairs. Compared with existing improvements on the same original framework under the same structure, our approach exhibits tremendous developments in BLEU and TER scores.


2020 ◽  
Author(s):  
Marie-Anne Xu ◽  
Rahul Khanna

Recent progress in machine reading comprehension and question-answering has allowed machines to reach and even surpass human question-answering. However, the majority of these questions have only one answer, and more substantial testing on questions with multiple answers, or multi-span questions, has not yet been applied. Thus, we introduce a newly compiled dataset consisting of questions with multiple answers that originate from previously existing datasets. In addition, we run BERT-based models pre-trained for question-answering on our constructed dataset to evaluate their reading comprehension abilities. Among the three of BERT-based models we ran, RoBERTa exhibits the highest consistent performance, regardless of size. We find that all our models perform similarly on this new, multi-span dataset (21.492% F1) compared to the single-span source datasets (~33.36% F1). While the models tested on the source datasets were slightly fine-tuned, performance is similar enough to judge that task formulation does not drastically affect question-answering abilities. Our evaluations indicate that these models are indeed capable of adjusting to answer questions that require multiple answers. We hope that our findings will assist future development in questionanswering and improve existing question-answering products and methods.


Sign in / Sign up

Export Citation Format

Share Document