scholarly journals A Deep Cascade Model for Multi-Document Reading Comprehension

Author(s):  
Ming Yan ◽  
Jiangnan Xia ◽  
Chen Wu ◽  
Bin Bi ◽  
Zhongzhou Zhao ◽  
...  

A fundamental trade-off between effectiveness and efficiency needs to be balanced when designing an online question answering system. Effectiveness comes from sophisticated functions such as extractive machine reading comprehension (MRC), while efficiency is obtained from improvements in preliminary retrieval components such as candidate document selection and paragraph ranking. Given the complexity of the real-world multi-document MRC scenario, it is difficult to jointly optimize both in an end-to-end system. To address this problem, we develop a novel deep cascade learning model, which progressively evolves from the documentlevel and paragraph-level ranking of candidate texts to more precise answer extraction with machine reading comprehension. Specifically, irrelevant documents and paragraphs are first filtered out with simple functions for efficiency consideration. Then we jointly train three modules on the remaining texts for better tracking the answer: the document extraction, the paragraph extraction and the answer extraction. Experiment results show that the proposed method outperforms the previous state-of-the-art methods on two large-scale multidocument benchmark datasets, i.e., TriviaQA and DuReader. In addition, our online system can stably serve typical scenarios with millions of daily requests in less than 50ms.

2021 ◽  
Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>


2020 ◽  
Vol 34 (05) ◽  
pp. 9146-9153
Author(s):  
Bingning Wang ◽  
Ting Yao ◽  
Qi Zhang ◽  
Jingfang Xu ◽  
Xiaochuan Wang

This paper presents the ReCO, a human-curated Chinese Reading Comprehension dataset on Opinion. The questions in ReCO are opinion based queries issued to commercial search engine. The passages are provided by the crowdworkers who extract the support snippet from the retrieved documents. Finally, an abstractive yes/no/uncertain answer was given by the crowdworkers. The release of ReCO consists of 300k questions that to our knowledge is the largest in Chinese reading comprehension. A prominent characteristic of ReCO is that in addition to the original context paragraph, we also provided the support evidence that could be directly used to answer the question. Quality analysis demonstrates the challenge of ReCO that it requires various types of reasoning skills such as causal inference, logical reasoning, etc. Current QA models that perform very well on many question answering problems, such as BERT (Devlin et al. 2018), only achieves 77% accuracy on this dataset, a large margin behind humans nearly 92% performance, indicating ReCO present a good challenge for machine reading comprehension. The codes, dataset and leaderboard will be freely available at https://github.com/benywon/ReCO.


2021 ◽  
Author(s):  
Samreen Ahmed ◽  
shakeel khoja

<p>In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F<sub>1</sub> score of 0.66 and 0.63, respectively.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingyuan Zhang ◽  
Zequn Zhang ◽  
Zhi Guo ◽  
Li Jin ◽  
Kang Liu ◽  
...  

Target-oriented opinion words extraction (TOWE) seeks to identify opinion expressions oriented to a specific target, and it is a crucial step toward fine-grained opinion mining. Recent neural networks have achieved significant success in this task by building target-aware representations. However, there are still two limitations of these methods that hinder the progress of TOWE. Mainstream approaches typically utilize position indicators to mark the given target, which is a naive strategy and lacks task-specific semantic meaning. Meanwhile, the annotated target-opinion pairs contain rich latent structural knowledge from multiple perspectives, but existing methods only exploit the TOWE view. To tackle these issues, we formulate the TOWE task as a question answering (QA) problem and leverage a machine reading comprehension (MRC) model trained with a multiview paradigm to extract targeted opinions. Specifically, we introduce a template-based pseudo-question generation method and utilize deep attention interaction to build target-aware context representations and extract related opinion words. To take advantage of latent structural correlations, we further cast the opinion-target structure into three distinct yet correlated views and leverage meta-learning to aggregate common knowledge among them to enhance the TOWE task. We evaluate the proposed model on four benchmark datasets, and our method achieves new state-of-the-art results. Extensional experiments have shown that the pipeline method with our approach could surpass existing opinion pair extraction models, including joint methods that are usually believed to work better.


2020 ◽  
Vol 10 (21) ◽  
pp. 7640
Author(s):  
Changchang Zeng ◽  
Shaobo Li ◽  
Qin Li ◽  
Jie Hu ◽  
Jianjun Hu

Machine Reading Comprehension (MRC) is a challenging Natural Language Processing (NLP) research field with wide real-world applications. The great progress of this field in recent years is mainly due to the emergence of large-scale datasets and deep learning. At present, a lot of MRC models have already surpassed human performance on various benchmark datasets despite the obvious giant gap between existing MRC models and genuine human-level reading comprehension. This shows the need for improving existing datasets, evaluation metrics, and models to move current MRC models toward “real” understanding. To address the current lack of comprehensive survey of existing MRC tasks, evaluation metrics, and datasets, herein, (1) we analyze 57 MRC tasks and datasets and propose a more precise classification method of MRC tasks with 4 different attributes; (2) we summarized 9 evaluation metrics of MRC tasks, 7 attributes and 10 characteristics of MRC datasets; (3) We also discuss key open issues in MRC research and highlighted future research directions. In addition, we have collected, organized, and published our data on the companion website where MRC researchers could directly access each MRC dataset, papers, baseline projects, and the leaderboard.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Changchang Zeng ◽  
Shaobo Li

Machine reading comprehension (MRC) is a challenging natural language processing (NLP) task. It has a wide application potential in the fields of question answering robots, human-computer interactions in mobile virtual reality systems, etc. Recently, the emergence of pretrained models (PTMs) has brought this research field into a new era, in which the training objective plays a key role. The masked language model (MLM) is a self-supervised training objective widely used in various PTMs. With the development of training objectives, many variants of MLM have been proposed, such as whole word masking, entity masking, phrase masking, and span masking. In different MLMs, the length of the masked tokens is different. Similarly, in different machine reading comprehension tasks, the length of the answer is also different, and the answer is often a word, phrase, or sentence. Thus, in MRC tasks with different answer lengths, whether the length of MLM is related to performance is a question worth studying. If this hypothesis is true, it can guide us on how to pretrain the MLM with a relatively suitable mask length distribution for MRC tasks. In this paper, we try to uncover how much of MLM’s success in the machine reading comprehension tasks comes from the correlation between masking length distribution and answer length in the MRC dataset. In order to address this issue, herein, (1) we propose four MRC tasks with different answer length distributions, namely, the short span extraction task, long span extraction task, short multiple-choice cloze task, and long multiple-choice cloze task; (2) four Chinese MRC datasets are created for these tasks; (3) we also have pretrained four masked language models according to the answer length distributions of these datasets; and (4) ablation experiments are conducted on the datasets to verify our hypothesis. The experimental results demonstrate that our hypothesis is true. On four different machine reading comprehension datasets, the performance of the model with correlation length distribution surpasses the model without correlation.


Author(s):  
Xin Liu ◽  
Kai Liu ◽  
Xiang Li ◽  
Jinsong Su ◽  
Yubin Ge ◽  
...  

The lack of sufficient training data in many domains, poses a major challenge to the construction of domain-specific machine reading comprehension (MRC) models with satisfying performance. In this paper, we propose a novel iterative multi-source mutual knowledge transfer framework for MRC. As an extension of the conventional knowledge transfer with one-to-one correspondence, our framework focuses on the many-to-many mutual transfer, which involves synchronous executions of multiple many-to-one transfers in an iterative manner.Specifically, to update a target-domain MRC model, we first consider other domain-specific MRC models as individual teachers, and employ knowledge distillation to train a multi-domain MRC model, which is differentially required to fit the training data and match the outputs of these individual models according to their domain-level similarities to the target domain. After being initialized by the multi-domain MRC model, the target-domain MRC model is fine-tuned to match both its training data and the output of its previous best model simultaneously via knowledge distillation. Compared with previous approaches, our framework can continuously enhance all domain-specific MRC models by enabling each model to iteratively and differentially absorb the domain-shared knowledge from others. Experimental results and in-depth analyses on several benchmark datasets demonstrate the effectiveness of our framework.


2020 ◽  
Author(s):  
Marie-Anne Xu ◽  
Rahul Khanna

Recent progress in machine reading comprehension and question-answering has allowed machines to reach and even surpass human question-answering. However, the majority of these questions have only one answer, and more substantial testing on questions with multiple answers, or multi-span questions, has not yet been applied. Thus, we introduce a newly compiled dataset consisting of questions with multiple answers that originate from previously existing datasets. In addition, we run BERT-based models pre-trained for question-answering on our constructed dataset to evaluate their reading comprehension abilities. Among the three of BERT-based models we ran, RoBERTa exhibits the highest consistent performance, regardless of size. We find that all our models perform similarly on this new, multi-span dataset (21.492% F1) compared to the single-span source datasets (~33.36% F1). While the models tested on the source datasets were slightly fine-tuned, performance is similar enough to judge that task formulation does not drastically affect question-answering abilities. Our evaluations indicate that these models are indeed capable of adjusting to answer questions that require multiple answers. We hope that our findings will assist future development in questionanswering and improve existing question-answering products and methods.


2020 ◽  
Vol 34 (10) ◽  
pp. 13987-13988
Author(s):  
Xuanyu Zhang ◽  
Zhichun Wang

Most of models for machine reading comprehension (MRC) usually focus on recurrent neural networks (RNNs) and attention mechanism, though convolutional neural networks (CNNs) are also involved for time efficiency. However, little attention has been paid to leverage CNNs and RNNs in MRC. For a deeper understanding, humans sometimes need local information for short phrases, sometimes need global context for long passages. In this paper, we propose a novel architecture, i.e., Rception, to capture and leverage both local deep information and global wide context. It fuses different kinds of networks and hyper-parameters horizontally rather than simply stacking them layer by layer vertically. Experiments on the Stanford Question Answering Dataset (SQuAD) show that our proposed architecture achieves good performance.


2020 ◽  
Vol 34 (10) ◽  
pp. 13963-13964
Author(s):  
Zhijing Wu ◽  
Hua Xu

Current neural models for Machine Reading Comprehension (MRC) have achieved successful performance in recent years. However, the model is too fragile and lack robustness to tackle the imperceptible adversarial perturbations to the input. In this work, we propose a multi-task learning MRC model with a hierarchical knowledge enrichment to further improve the robustness for noisy document. Our model follows a typical encode-align-decode framework. Additionally, we apply a hierarchical method of adding background knowledge into the model from coarse-to-fine to enhance the language representations. Besides, we optimize our model by jointly training the answer span and unanswerability prediction, aiming to improve the robustness to noise. Experiment results on benchmark datasets confirm the superiority of our method, and our method can achieve competitive performance compared with other strong baselines.


Sign in / Sign up

Export Citation Format

Share Document