scholarly journals Visible Light Communication Survey

2019 ◽  
pp. 22-31
Author(s):  
Eszter Udvary

Communication applying visible light technology is a novel approach. Visible Light Communication (VLC) development is motivated by the increasing demand for wireless communication technologies. It has the potential to provide highspeed data communication with good security and improved energy efficiency. The rapid evolution of VLC was sustained by the LEDs performances. The Light-Emitting-Diode (LED) luminaires are capable of switching to the different light intensity at a fast rate. This function can be used for data transmission. This article focuses on the physical layer of the VLC links. It reviews the technology, the topology of the proposed connection, and the benefits of this approach. The main research trends are identified emphasizing state of the art in this area. It shows how VLC technology evolved and what are the performances achieved at this time. Various structures of the transmitter and receiver are studied, and different modulation schemes are investigated. Finally, numerous applications of VLC technology are presented.

2017 ◽  
Vol 54 (5) ◽  
pp. 050602
Author(s):  
张宇飞 Zhang Yufei ◽  
张洪明 Zhang Hongming ◽  
王鹏 Wang Peng ◽  
刘涛 Liu Tao ◽  
孙德栋 Sun Dedong ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Hyunwoo Jung ◽  
Sung-Man Kim

We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the performance dependency on the wavelengths of the LED transmitter and receiver by measuring the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate (BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are shown to compare the performance. Furthermore, we discuss major distortions and signal losses in the full-duplex LED-to-LED VLC system.


2021 ◽  
Vol 18 (4) ◽  
pp. 7-24
Author(s):  
Svetlana Grigoryeva ◽  
Alexander Baklanov ◽  
Aslima Alimkhanova ◽  
Alexander Dmitriev ◽  
György Györök

2021 ◽  
Author(s):  
Uğur Bekçibaşı ◽  
Kubilay TASDELEN

Abstract Visible Light Communication (VLC) is an up-to-date issue where Light Emitting Diode (LED) is used for lighting and data transmission. Although interest in Visible Light Communication has increased in current academic studies, the devices ready for commercial use are still lacking. In this study, the system design of semi-software-based visible light communication which is designed to work in Layer 1 of the IEEE 802.15.7-2011 standard is presented and its performance under different conditions is investigated. Designed on an embedded Linux platform, where LED lights are used as transmitter and photodiode as a receiver, the system can supply the workload of the current standard at basic speeds with a basic physical layer, media access principles, and protocol support. In the structure, software and hardware are designed, which include basic principles such as signal sampling, symbol detection, encoding/decoding in the Physical layer of the OSI network model (PHY), and Medium Access Control (MAC). Low and high-power LEDs as transmitters and photodiodes as receivers are built on BeagleBone Black (BBB), a System on a Chip (SoC) platform. For performance measurements, the measurement results of variables such as ambient brightness, communication distance, ultraviolet (UV) - Polarizer - Neutral Density (ND) filters, and data load are presented.


2019 ◽  
Vol 13 (7) ◽  
pp. 873-878
Author(s):  
Ziwen Li ◽  
Dingke Xue ◽  
Dayong Liu ◽  
Yang Liu ◽  
Weilin Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document